Cantitate/Preț
Produs

Random Matrices and Non-Commutative Probability

Autor Arup Bose
en Limba Engleză Paperback – 29 ian 2024
This is an introductory book on Non-Commutative Probability or Free Probability and Large Dimensional Random Matrices. Basic concepts of free probability are introduced by analogy with classical probability in a lucid and quick manner. It then develops the results on the convergence of large dimensional random matrices, with a special focus on the interesting connections to free probability. The book assumes almost no prerequisite for the most part. However, familiarity with the basic convergence concepts in probability and a bit of mathematical maturity will be helpful.
  • Combinatorial properties of non-crossing partitions, including the Möbius function play a central role in introducing free probability.
  • Free independence is defined via free cumulants in analogy with the way classical independence can be defined via classical cumulants.
  • Free cumulants are introduced through the Möbius function.
  • Free product probability spaces are constructed using free cumulants.
  • Marginal and joint tracial convergence of large dimensional random matrices such as the Wigner, elliptic, sample covariance, cross-covariance, Toeplitz, Circulant and Hankel are discussed.
  • Convergence of the empirical spectral distribution is discussed for symmetric matrices.
  • Asymptotic freeness results for random matrices, including some recent ones, are discussed in detail. These clarify the structure of the limits for joint convergence of random matrices.
  • Asymptotic freeness of independent sample covariance matrices is also demonstrated via embedding into Wigner matrices.
  • Exercises, at advanced undergraduate and graduate level, are provided in each chapter.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 44346 lei  6-8 săpt.
  CRC Press – 29 ian 2024 44346 lei  6-8 săpt.
Hardback (1) 110382 lei  6-8 săpt.
  CRC Press – 27 oct 2021 110382 lei  6-8 săpt.

Preț: 44346 lei

Preț vechi: 52171 lei
-15% Nou

Puncte Express: 665

Preț estimativ în valută:
8493 8750$ 7115£

Carte tipărită la comandă

Livrare economică 22 februarie-08 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780367705008
ISBN-10: 0367705001
Pagini: 286
Dimensiuni: 156 x 234 x 15 mm
Greutate: 0.53 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC

Cuprins

  1. Classical independence, moments and cumulants. 2. Non-commutative probability. 3. Free independence. 4. Convergence. 5. Transforms. 6. C* -probability space. 7. Random matrices. 8. Convergence of some important matrices. 9. Joint convergence I: single pattern. 10. Joint convergence II: multiple patterns. 11. Asymptotic freeness of random matrices. 12. Brown measure. 13. Tying three loose ends.

Notă biografică

Arup Bose is on the faculty of the Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, Kolkata, India. He has research contributions in statistics, probability, economics and econometrics. He is a Fellow of the Institute of Mathematical Statistics (USA), and of all three national science academies of India. He is a recipient of the S.S. Bhatnagar Prize and the C.R. Rao Award and holds a J.C.Bose National Fellowship. He has been on the editorial board of several journals. He has authored four books: Patterned Random Matrices, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee), U-Statistics, Mm-Estimators and Resampling (with Snigdhansu Chatterjee) and Random Circulant Matrices (with Koushik Saha).

Descriere

Free Probability/Non-commutative Probability has gained much attentionsignificant advances have been made since its initiation in the 1990’s. Though it started as a branch of Mathematics, it has found significant applications in statistics, wireless communication etc, particularly through deep and interesting connections with Random Matrix Theory.