Cantitate/Preț
Produs

Recent Advances in Algorithmic Differentiation: Lecture Notes in Computational Science and Engineering, cartea 87

Editat de Shaun Forth, Paul Hovland, Eric Phipps, Jean Utke, Andrea Walther
en Limba Engleză Paperback – 9 aug 2014
The proceedings represent the state of knowledge in the area of algorithmic differentiation (AD). The 31 contributed papers presented at the AD2012 conference cover the application of AD to many areas in science and engineering as well as aspects of AD theory and its implementation in tools. For all papers the referees, selected from the program committee and the greater community, as well as the editors have emphasized accessibility of the presented ideas also to non-AD experts. In the AD tools arena new implementations are introduced covering, for example, Java and graphical modeling environments or join the set of existing tools for Fortran. New developments in AD algorithms target the efficiency of matrix-operation derivatives, detection and exploitation of sparsity, partial separability, the treatment of nonsmooth functions, and other high-level mathematical aspects of the numerical computations to be differentiated. Applications stem from the Earth sciences, nuclear engineering, fluid dynamics, and chemistry, to name just a few. In many cases the applications in a given area of science or engineering share characteristics that require specific approaches to enable AD capabilities or provide an opportunity for efficiency gains in the derivative computation. The description of these characteristics and of the techniques for successfully using AD should make the proceedings a valuable source of information for users of AD tools.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 63364 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 9 aug 2014 63364 lei  6-8 săpt.
Hardback (1) 63814 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 31 iul 2012 63814 lei  6-8 săpt.

Din seria Lecture Notes in Computational Science and Engineering

Preț: 63364 lei

Preț vechi: 74546 lei
-15% Nou

Puncte Express: 950

Preț estimativ în valută:
12132 12633$ 10066£

Carte tipărită la comandă

Livrare economică 13-27 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642439919
ISBN-10: 3642439918
Pagini: 380
Ilustrații: XVIII, 362 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.53 kg
Ediția:2012
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Computational Science and Engineering

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Graduate

Textul de pe ultima copertă

The proceedings represent the state of knowledge in the area of algorithmic differentiation (AD).  The 31 contributed papers presented at the AD2012 conference cover the application of AD to many areas in science and engineering as well as aspects of AD theory and its implementation in tools. For all papers the referees, selected from the program committee and the greater community, as well as the editors have emphasized accessibility of the presented ideas also to non-AD experts. In the AD tools arena new implementations are introduced covering, for example, Java and graphical modeling environments or join the set of existing tools for Fortran. New developments in AD algorithms target the efficiency of matrix-operation derivatives, detection and exploitation of sparsity, partial separability, the treatment of nonsmooth functions, and other high-level mathematical aspects of the numerical computations to be differentiated. Applications stem from the Earth sciences, nuclear engineering, fluid dynamics, and chemistry, to name just a few. In many cases the applications in a given area of science or engineering share characteristics that require specific approaches to enable AD capabilities or provide an opportunity for efficiency gains in the derivative computation. The description of these characteristics and of the techniques for successfully using AD should make the proceedings a valuable source of information for users of AD tools.

Caracteristici

Easily accessible explanations that do not require a priori in-depth expertise Covers topics for users, researchers, and tool developers in the algorithmic differentiation area This collection is the most comprehensive and recent source of information on the subject since the AD2008 proceedings Includes supplementary material: sn.pub/extras