Cantitate/Preț
Produs

Recent Advances in Robot Learning: Machine Learning: The Springer International Series in Engineering and Computer Science, cartea 368

Editat de Judy A. Franklin, Tom M. Mitchell, Sebastian Thrun
en Limba Engleză Paperback – 17 sep 2011
Recent Advances in Robot Learning contains seven papers on robot learning written by leading researchers in the field. As the selection of papers illustrates, the field of robot learning is both active and diverse. A variety of machine learning methods, ranging from inductive logic programming to reinforcement learning, is being applied to many subproblems in robot perception and control, often with objectives as diverse as parameter calibration and concept formulation.
While no unified robot learning framework has yet emerged to cover the variety of problems and approaches described in these papers and other publications, a clear set of shared issues underlies many robot learning problems.
  • Machine learning, when applied to robotics, is situated: it is embedded into a real-world system that tightly integrates perception, decision making and execution.
  • Since robot learning involves decision making, there is an inherent active learning issue.
  • Robotic domains are usually complex, yet the expense of using actual robotic hardware often prohibits the collection of large amounts of training data.
  • Most robotic systems are real-time systems. Decisions must be made within critical or practical time constraints.

These characteristics present challenges and constraints to the learning system. Since these characteristics are shared by other important real-world application domains, robotics is a highly attractive area for research on machine learning.
On the other hand, machine learning is also highly attractive to robotics. There is a great variety of open problems in robotics that defy a static, hand-coded solution.
Recent Advances in Robot Learning is an edited volume of peer-reviewed original research comprising seven invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 23, Numbers 2 and 3).
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 95548 lei  6-8 săpt.
  Springer Us – 17 sep 2011 95548 lei  6-8 săpt.
Hardback (1) 96155 lei  6-8 săpt.
  Springer Us – 30 iun 1996 96155 lei  6-8 săpt.

Din seria The Springer International Series in Engineering and Computer Science

Preț: 95548 lei

Preț vechi: 119434 lei
-20% Nou

Puncte Express: 1433

Preț estimativ în valută:
18284 19231$ 15278£

Carte tipărită la comandă

Livrare economică 08-22 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461380641
ISBN-10: 1461380642
Pagini: 228
Ilustrații: IV, 218 p.
Dimensiuni: 160 x 240 x 12 mm
Greutate: 0.33 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

Machine Learning.- Real-World Robotics: Learning, to Plan for Robust Execution.- Robot Programming by Demonstration (RPD): Supporting the Induction by Human Interaction.- Performance Improvement of Robot Continuous-Path Operation through Iterative Learning Using Neural Networks.- Learning Controllers for Industrial Robots.- Active Learning for Vision-Based Robot Grasping.- Purposive Behavior Acquisition for a Real Robot by Vision-Based Reinforcement Learning.- Learning Concepts from Sensor Data of a Mobile Robot.