Cantitate/Preț
Produs

Recommender System for Improving Customer Loyalty: Studies in Big Data, cartea 55

Autor Katarzyna Tarnowska, Zbigniew W. Ras, Lynn Daniel
en Limba Engleză Hardback – 27 mar 2019
This book presents the Recommender System for Improving Customer Loyalty. New and innovative products have begun appearing from a wide variety of countries, which has increased the need to improve the customer experience. When a customer spends hundreds of thousands of dollars on a piece of equipment, keeping it running efficiently is critical to achieving the desired return on investment. Moreover, managers have discovered that delivering a better customer experience pays off in a number of ways. A study of publicly traded companies conducted by Watermark Consulting found that from 2007 to 2013, companies with a better customer service generated a total return to shareholders that was 26 points higher than the S&P 500. This is only one of many studies that illustrate the measurable value of providing a better service experience.
The Recommender System presented here addresses several important issues. (1) It provides a decision framework to help managers determine which actions are likely to have the greatest impact on the Net Promoter Score. (2) The results are based on multiple clients. The data mining techniques employed in the Recommender System allow users to “learn” from the experiences of others, without sharing proprietary information. This dramatically enhances the power of the system. (3) It supplements traditional text mining options. Text mining can be used to identify the frequency with which topics are mentioned, and the sentiment associated with a given topic. The Recommender System allows users to view specific, anonymous comments associated with actual customers. Studying these comments can provide highly accurate insights into the steps that can be taken to improve the customer experience. (4) Lastly, the system provides a sensitivity analysis feature. In some cases, certain actions can be more easily implemented than others. The Recommender System allows managers to “weigh” these actions and determine which ones would have a greater impact.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 62513 lei  43-57 zile
  Springer International Publishing – 14 aug 2020 62513 lei  43-57 zile
Hardback (1) 63111 lei  43-57 zile
  Springer International Publishing – 27 mar 2019 63111 lei  43-57 zile

Din seria Studies in Big Data

Preț: 63111 lei

Preț vechi: 78890 lei
-20% Nou

Puncte Express: 947

Preț estimativ în valută:
12078 12546$ 10033£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030134372
ISBN-10: 3030134377
Pagini: 190
Ilustrații: XVIII, 124 p. 40 illus., 30 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.38 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Big Data

Locul publicării:Cham, Switzerland

Cuprins

Chapter 1: Introduction.- Chapter 2: Customer Loyalty Improvement.- Chapter 3: State of the Art.- Chapter 4: Background.- Chapter 5: Overview of Recommender System Engine.- Chapter 6: Visual Data Analysis.- Chapter 7: Improving Performance of Knowledge Miner.- Chapter 8: Recommender System Based on Unstructured Data.- Chapter 9: Customer Attrition Problem.- Chapter 10: Conclusion.

Notă biografică



Textul de pe ultima copertă

This book presents the Recommender System for Improving Customer Loyalty. New and innovative products have begun appearing from a wide variety of countries, which has increased the need to improve the customer experience. When a customer spends hundreds of thousands of dollars on a piece of equipment, keeping it running efficiently is critical to achieving the desired return on investment. Moreover, managers have discovered that delivering a better customer experience pays off in a number of ways. A study of publicly traded companies conducted by Watermark Consulting found that from 2007 to 2013, companies with a better customer service generated a total return to shareholders that was 26 points higher than the S&P 500. This is only one of many studies that illustrate the measurable value of providing a better service experience.
The Recommender System presented here addresses several important issues. (1) It provides a decision framework to help managers determine which actions are likely to have the greatest impact on the Net Promoter Score. (2) The results are based on multiple clients. The data mining techniques employed in the Recommender System allow users to “learn” from the experiences of others, without sharing proprietary information. This dramatically enhances the power of the system. (3) It supplements traditional text mining options. Text mining can be used to identify the frequency with which topics are mentioned, and the sentiment associated with a given topic. The Recommender System allows users to view specific, anonymous comments associated with actual customers. Studying these comments can provide highly accurate insights into the steps that can be taken to improve the customer experience. (4) Lastly, the system provides a sensitivity analysis feature. In some cases, certain actions can be more easily implemented than others. The Recommender System allows managers to “weigh” these actions and determine which ones would have a greater impact.

Caracteristici

Presents the Recommender System for Improving Customer Loyalty Describes recommender systems and their applications Written by respected experts in the field