Riemannian Foliations: Progress in Mathematics, cartea 73
Autor Molinoen Limba Engleză Paperback – 27 iul 2012
Din seria Progress in Mathematics
- 24% Preț: 740.79 lei
- Preț: 308.20 lei
- 20% Preț: 695.88 lei
- Preț: 362.51 lei
- Preț: 308.13 lei
- 18% Preț: 749.27 lei
- 9% Preț: 766.41 lei
- 20% Preț: 631.08 lei
- 24% Preț: 638.86 lei
- 15% Preț: 580.82 lei
- Preț: 392.37 lei
- Preț: 395.09 lei
- Preț: 376.80 lei
- Preț: 390.25 lei
- 18% Preț: 729.53 lei
- 15% Preț: 652.49 lei
- 15% Preț: 649.22 lei
- 18% Preț: 897.95 lei
- Preț: 385.08 lei
- Preț: 391.02 lei
- Preț: 378.54 lei
- 15% Preț: 531.59 lei
- 15% Preț: 642.83 lei
- 15% Preț: 650.69 lei
- Preț: 381.21 lei
- Preț: 392.37 lei
- Preț: 398.53 lei
- 15% Preț: 699.28 lei
- Preț: 416.92 lei
- Preț: 385.84 lei
- 18% Preț: 902.65 lei
- 18% Preț: 802.28 lei
- 15% Preț: 640.06 lei
- 18% Preț: 1129.83 lei
- 15% Preț: 494.03 lei
- 15% Preț: 593.08 lei
Preț: 729.68 lei
Preț vechi: 889.85 lei
-18% Nou
Puncte Express: 1095
Preț estimativ în valută:
139.64€ • 144.06$ • 118.19£
139.64€ • 144.06$ • 118.19£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781468486728
ISBN-10: 1468486721
Pagini: 360
Ilustrații: XII, 344 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.5 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Boston, MA, United States
ISBN-10: 1468486721
Pagini: 360
Ilustrații: XII, 344 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.5 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
1 Elements of Foliation theory.- 1.1. Foliated atlases ; foliations.- 1.2. Distributions and foliations.- 1.3. The leaves of a foliation.- 1.4. Particular cases and elementary examples.- 1.5. The space of leaves and the saturated topology.- 1.6. Transverse submanifolds ; proper leaves and closed leaves.- 1.7. Leaf holonomy.- 1.8. Exercises.- 2 Transverse Geometry.- 2.1. Basic functions.- 2.2. Foliate vector fields and transverse fields.- 2.3. Basic forms.- 2.4. The transverse frame bundle.- 2.5. Transverse connections and G-structures.- 2.6. Foliated bundles and projectable connections.- 2.7. Transverse equivalence of foliations.- 2.8. Exercises.- 3 Basic Properties of Riemannian Foliations.- 3.1. Elements of Riemannian geometry.- 3.2. Riemannian foliations: bundle-like metrics.- 3.3. The Transverse Levi-Civita connection and the associated transverse parallelism.- 3.4. Properties of geodesics for bundle-like metrics.- 3.5. The case of compact manifolds : the universal covering of the leaves.- 3.6. Riemannian foliations with compact leaves and Satake manifolds.- 3.7. Riemannian foliations defined by suspension.- 3.8. Exercises.- 4 Transversally Parallelizable Foliations.- 4.1. The basic fibration.- 4.2. CompIete Lie foliations.- 4.3. The structure of transversally parallelizable foliations.- 4.4. The commuting sheaf C(M, F).- 4.5. Transversally complete foliations.- 4.6. The Atiyah sequence and developability.- 4.7. Exercises.- 5 The Structure of Riemannian Foliations.- 5.1. The lifted foliation.- 5.2. The structure of the leaf closures.- 5.3. The commuting sheaf and the second structure theorem.- 5.4. The orbits of the global transverse fields.- 5.5. Killing foliations.- 5.6. Riemannian foliations of codimension 1, 2 or 3.- 5.7. Exercises.- 6 Singular Riemannian Foliations.- 6.1. The notion of a singular Riemannian foliation.- 6.2. Stratification by the dimension of the leaves.- 6.3. The local decomposition theorem.- 6.4. The linearized foliation.- 6.5. The global geometry of SRFs.- 6.6. Exercises.- Appendix A Variations on Riemannian Flows.- Appendix B Basic Cohomology and Tautness of Riemannian Foliations.- Appendix C The Duality between Riemannian Foliations and Geodesible Foliations.- Appendix D Riemannian Foliations and Pseudogroups of Isometries.- Appendix E Riemannian Foliations: Examples and Problems.- References.