Cantitate/Preț
Produs

Robust Control-Oriented Linear Fractional Transform Modelling: Applications for the µ-Synthesis Based H∞ Control: Studies in Systems, Decision and Control, cartea 453

Autor Tamal Roy, Ranjit Kumar Barai
en Limba Engleză Paperback – 5 ian 2024
This book covers a new paradigm of system modeling – the robust control-oriented linear fractional transformation (LFT) modeling. A dynamic system expressed in LFT modeling framework paves the way for the application of modern robust controller design technique like μ-synthesis method for controller design. This book covers the generalized robust control-oriented LFT modeling representation of the MIMO system depending upon the uncertainty structure, system dynamics, and the dimensions of the input–output. The modeling framework results into a compact and manageable representation of uncertainty modeling in the form of feedback-like structure that is suitable for design and implementation of the robust control technique like μ-synthesis-based H∞ control theory. This book also describes the application of the proposed methodology in a variety of advanced mechatronic systems like the Twin Rotor MIMO system, wheeled mobile robot, and an industrial robot arm.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 97653 lei  6-8 săpt.
  Springer Nature Singapore – 5 ian 2024 97653 lei  6-8 săpt.
Hardback (1) 98257 lei  3-5 săpt.
  Springer Nature Singapore – 4 ian 2023 98257 lei  3-5 săpt.

Din seria Studies in Systems, Decision and Control

Preț: 97653 lei

Preț vechi: 119089 lei
-18% Nou

Puncte Express: 1465

Preț estimativ în valută:
18695 19432$ 154100£

Carte tipărită la comandă

Livrare economică 08-22 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789811974649
ISBN-10: 9811974640
Pagini: 161
Ilustrații: XI, 161 p. 96 illus., 95 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.25 kg
Ediția:1st ed. 2023
Editura: Springer Nature Singapore
Colecția Springer
Seria Studies in Systems, Decision and Control

Locul publicării:Singapore, Singapore

Cuprins

Introduction.- Mathematical Modelling of Real Physical System.- Control Oriented Linear Fractional Transformation.- Synthesis Based H Control Theory.- Generalized Control Oriented LFT Modelling of a Coupled Uncertain MIMO System.- Control-Oriented LFT Modelling of a Two-DOF Spring- Mass-Dashpot Dynamic System.- Control Oriented LFT Modelling and H Control of Twin Rotor MIMO System.- Control Oriented LFT Modelling and H Control of Differentially Driven Wheeled Mobile Robot.- Control Oriented LFT Modelling and H Control of Differentially Driven Wheeled Mobile Robot with Slip Dynamics.

Recenzii

“In this book, the authors investigate robust control-oriented linear fractional transform modelling. More concretely, they provide a systematic approach of mathematical modelling associated with complex physical system that would enable the control system engineer to effectively design H∞ robust controller with guaranteed performance.” (Savin Treanţă, zbMATH 1516.93001, 2023)

Notă biografică

Dr. Tamal Roy received his Bachelor’s degree in Electrical Engineering from the West Bengal University of Technology, Kolkata, 2005. He received his Master in Mechatronics Engineering from the National Institute of Technical Teachers Training and Research, Kolkata, in 2008, and completed his Ph.D. from Jadavpur University in 2016. In 2008, he joined the Department of Electrical Engineering at Hooghly Engineering and Technology College as a Lecturer. Since 2011, he has been working as an assistant professor in the Electrical Engineering Department of MCKV Institute of Engineering and presently is working as the head of the Department. His current research interests include adaptive control, uncertainty modeling, system identification, and robust control of nonlinear systems.
Dr. Ranjit Kumar Barai graduated in Bachelor of Electrical Engineering in 1993 and Master of Electrical Engineering in 1995 from Jadavpur University, India, and Ph.D. in Artificial Systems Science (with specialization in Mechatronics and Robotics) in 2007 from Chiba University, Japan. He has performed post-doctoral research at Rolls-Royce Corporate Laboratory at Nanyang Technological University, Singapore, in 2015-16 on robotized manufacturing. He is now a professor in the Control Systems Division, Department of Electrical Engineering, Jadavpur University. He has more than 20 years of working experience in industry, research, and teaching at graduate and post-graduate levels. His research interests include mechatronics, robotics, control systems, machine learning and soft-computing, modeling and system identification, and real-time systems. 

Textul de pe ultima copertă

This book covers a new paradigm of system modeling – the robust control-oriented linear fractional transformation (LFT) modeling. A dynamic system expressed in LFT modeling framework paves the way for the application of modern robust controller design technique like μ-synthesis method for controller design. This book covers the generalized robust control-oriented LFT modeling representation of the MIMO system depending upon the uncertainty structure, system dynamics, and the dimensions of the input–output. The modeling framework results into a compact and manageable representation of uncertainty modeling in the form of feedback-like structure that is suitable for design and implementation of the robust control technique like μ-synthesis-based H∞ control theory. This book also describes the application of the proposed methodology in a variety of advanced mechatronic systems like the Twin Rotor MIMO system, wheeled mobile robot, and an industrial robot arm.

Caracteristici

Covers a new paradigm of system modeling – the robust control-oriented linear fractional transformation Describes application of the proposed methodology in a variety of advanced mechatronic systems Serves as a reference for undergraduate and post-graduate students in engineering education