Cantitate/Preț
Produs

Self-Oscillations in Dynamic Systems: A New Methodology via Two-Relay Controllers: Systems & Control: Foundations & Applications

Autor Luis T. Aguilar, Igor Boiko, Leonid Fridman, Rafael Iriarte
en Limba Engleză Paperback – 23 aug 2016
This monograph presents a simple and efficient two-relay control algorithm for generation of self-excited oscillations of a desired amplitude and frequency in dynamic systems. Developed by the authors, the two-relay controller consists of two relays switched by the feedback received from a linear or nonlinear system, and represents a new approach to the self-generation of periodic motions in underactuated mechanical systems.
The first part of the book explains the design procedures for two-relay control using three different methodologies – the describing-function method, Poincaré maps, and the locus-of-a perturbed-relay-system method – and concludes with stability analysis of designed periodic oscillations.
Two methods to ensure the robustness of two-relay control algorithms are explored in the second part, one based on the combination of the high-order sliding mode controller and backstepping, and the other on higher-order sliding-modes-based reconstruction of uncertainties and their compensation where Lyapunov-based stability analysis of tracking error is used. Finally, the third part illustrates applications of self-oscillation generation by a two-relay control with a Furuta pendulum, wheel pendulum, 3-DOF underactuated robot, 3-DOF laboratory helicopter, and fixed-phase electronic circuits.
Self-Oscillations in Dynamic Systems will appeal to engineers, researchers, and graduate students working on the tracking and self-generation of periodic motion of electromechanical systems, including non-minimum-phase systems. It will also be of interest to mathematicians working on analysis of periodic solutions.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 37356 lei  43-57 zile
  Springer International Publishing – 23 aug 2016 37356 lei  43-57 zile
Hardback (1) 38054 lei  43-57 zile
  Springer International Publishing – 12 oct 2015 38054 lei  43-57 zile

Din seria Systems & Control: Foundations & Applications

Preț: 37356 lei

Nou

Puncte Express: 560

Preț estimativ în valută:
7149 7426$ 5938£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319365374
ISBN-10: 3319365371
Pagini: 158
Ilustrații: XIV, 158 p.
Dimensiuni: 155 x 235 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 2015
Editura: Springer International Publishing
Colecția Birkhäuser
Seria Systems & Control: Foundations & Applications

Locul publicării:Cham, Switzerland

Cuprins

​Introduction.- Part I: Design of Self-Oscillations using Two-Relay Controller.- Describing Function-Based Design of TRC for Generation of Self-Oscillation.- Poincaré Maps Based Design.- Self-Oscillation via Locus of a Perturbed Relay System Design (LPRS).- Part II: Robustification of the Self-Oscillation Generated by Two-Relay Controller.- Robustification of the Self-Oscillation via Sliding Modes Tracking Controllers.- Output-Based Robust Generation of Self-Oscillations.- Part III: Applications.- Generating Self-Oscillations in Furuta Pendulum.- Three Link Serial Structure Underactuated Robot.- Generation of Self-Oscillations in Systems with Double Integrator.- Fixed-Phase Loop (FPL).- Appendix A: Describing Function.- Appendix B: The Locus of a Perturbed Relay System (LPRS).- Appendix C: Poincaré Map.- Appendix D: Output Feedback.- References.- Index.

Recenzii

“The book contains ten chapters presented in three parts. … The intended audience for this book consists of mechanical and control scientists and engineers, as well as graduate and Ph.D. students interested in the theory of self-oscillation generation in underactuated dynamic systems.” (Clementina D. Mladenova, Mathematical Reviews, June, 2016)

Textul de pe ultima copertă

This monograph presents a simple and efficient two-relay control algorithm for generation of self-excited oscillations of a desired amplitude and frequency in dynamic systems. Developed by the authors, the two-relay controller consists of two relays switched by the feedback received from a linear or nonlinear system, and represents a new approach to the self-generation of periodic motions in underactuated mechanical systems.

The first part of the book explains the design procedures for two-relay control using three different methodologies – the describing-function method, Poincaré maps, and the locus-of-a perturbed-relay-system method – and concludes with stability analysis of designed periodic oscillations.

Two methods to ensure the robustness of two-relay control algorithms are explored in the second part, one based on the combination of the high-order sliding mode controller and backstepping, and the other on higher-order sliding-modes-based reconstruction ofuncertainties and their compensation where Lyapunov-based stability analysis of tracking error is used. Finally, the third part illustrates applications of self-oscillation generation by a two-relay control with a Furuta pendulum, wheel pendulum, 3-DOF underactuated robot, 3-DOF laboratory helicopter, and fixed-phase electronic circuits.

Self-Oscillations in Dynamic Systems will appeal to engineers, researchers, and graduate students working on the tracking and self-generation of periodic motion of electromechanical systems, including non-minimum-phase systems. It will also be of interest to mathematicians working on analysis of periodic solutions.

Caracteristici

Describes a quick and efficient method of control synthesis for generating periodic motions Demonstrates applications to non-minimum-phase systems, including underactuated mechanisms Provides a rigorous theoretical background for the development of two-relay controllers supported by experimental results