Cantitate/Preț
Produs

Signaling-Mediated Control of Cell Division: From Oogenesis to Oocyte-to-Embryo Development: Results and Problems in Cell Differentiation, cartea 59

Editat de Swathi Arur
en Limba Engleză Hardback – 7 mar 2017
This volume covers the current knowledge base on the role of signaling and environmental pathways that control the normal development of germline stem cells, meiotic progression of oocytes, events of oocyte maturation and fertilization, and the birth of an embryo.

Germ cells are uniquely poised to sustain life across generations through the fusion of oocyte and sperm. Because of the central importance of germ cells to life, much work has been dedicated to obtaining a clear understanding of the molecular and signaling events that control their formation and maintenance.  Germ cells are set aside from somatic cells in the embryo and go through specialized meiotic cell cycles as the animal matures. These cell cycles are interspersed with long periods of arrest. In human females, meiosis I is initiated in the fetus. At birth, oocytes are arrested in meiosis I; after puberty, every month an oocyte initiates meiosis II – ovulation. Upon sperm availability these cells are fertilized, generate an embryo, and the cycle-of-life continues. During meiotic I progression and arrest, the fitness of oocytes and their progeny are likely influenced by environmental cues and signaling pathways.

A lot of recent work has focused on understanding the mechanisms that regulate oocyte fitness and quality in humans and vertebrates. Much of our understanding on the events of meiosis I and germline stem cell populations comes from work in invertebrates, wherein the germline stem cells produce oocytes continuously through adult development. In both inverbrates and vertebrates nutritional and signaling pathways control the regulation of stem cells in such a manner so as to couple production of gametes with the nutritional availability. Additionally, mature oocytes arrest both in meiosis I and meiosis II, and signaling and nutritional pathways have been shown to regulate their formation, and maintenance, such that despite long periods ofarrest, the oocyte quality is assured and errors in chromosome segregation and varied cytoplasmic events are minimal.

Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 92568 lei  43-57 zile
  Springer International Publishing – 18 iul 2018 92568 lei  43-57 zile
Hardback (1) 93171 lei  43-57 zile
  Springer International Publishing – 7 mar 2017 93171 lei  43-57 zile

Din seria Results and Problems in Cell Differentiation

Preț: 93171 lei

Preț vechi: 113623 lei
-18% Nou

Puncte Express: 1398

Preț estimativ în valută:
17831 18522$ 14811£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319448190
ISBN-10: 3319448196
Pagini: 338
Ilustrații: X, 292 p. 37 illus., 34 illus. in color.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.6 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Results and Problems in Cell Differentiation

Locul publicării:Cham, Switzerland

Cuprins

Chapter 1.Role of chromatin modifications in germline stem cell differentiation.- Chapter 2.Regulation of the balance between proliferation and differentiation in germline stem cells.- Chapter 3.Control of germ line stem cell lineages by diet and physiology.- Chapter 4.Signal-mediated regulation of meiotic prophase I during oogenesis.- Chapter 5.Prophase I: preparing chromosomes for segregation in the developing oocyte.- Chapter 6.Translational control of germ cell decisions.- Chapter 7.Prostagladin signaling from oocyte to sperm.- Chapter 8.Cell fate maintenance and reprogramming during the oocyte-to-embryo transition’.- Chapter 9.Cell cycle regulation in oocytes.- Chapter 10.Oocyte activation and fertilization: crucial sperm and oocyte factors.

Textul de pe ultima copertă

This volume covers the current knowledge base on the role of signaling and environmental pathways that control the normal development of germline stem cells, meiotic progression of oocytes, events of oocyte maturation and fertilization, and the birth of an embryo.

Germ cells are uniquely poised to sustain life across generations through the fusion of oocyte and sperm. Because of the central importance of germ cells to life, much work has been dedicated to obtaining a clear understanding of the molecular and signaling events that control their formation and maintenance. Germ cells are set aside from somatic cells in the embryo and go through specialized meiotic cell cycles as the animal matures. These cell cycles are interspersed with long periods of arrest. In human females, meiosis I is initiated in the fetus. At birth, oocytes are arrested in meiosis I; after puberty, every month an oocyte initiates meiosis II – ovulation. Upon sperm availability these cellsare fertilized, generate an embryo, and the cycle-of-life continues. During meiotic I progression and arrest, the fitness of oocytes and their progeny are likely influenced by environmental cues and signaling pathways.

A lot of recent work has focused on understanding the mechanisms that regulate oocyte fitness and quality in humans and vertebrates. Much of our understanding on the events of meiosis I and germline stem cell populations comes from work in invertebrates, wherein the germline stem cells produce oocytes continuously through adult development. In both inverbrates and vertebrates nutritional and signaling pathways control the regulation of stem cells in such a manner so as to couple production of gametes with the nutritional availability. Additionally, mature oocytes arrest both in meiosis I and meiosis II, and signaling and nutritional pathways have been shown to regulate their formation, and maintenance, such that despite long periods of arrest, the oocyte quality is assured and errors in chromosome segregation and varied cytoplasmic events are minimal.

Caracteristici

State-of-the-art summary on the important role of germ cells to life Gives profound information on the molecular and signaling events that control germ cells formation and maintenance Explains the mechanisms that regulate oocyte fitness and quality in humans and vertebrates