Solid Mechanics: An Introduction: Solid Mechanics and Its Applications, cartea 15
Autor J. P. Warden Limba Engleză Hardback – 31 aug 1992
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 917.40 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 9 dec 2010 | 917.40 lei 6-8 săpt. | |
Hardback (1) | 923.24 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 31 aug 1992 | 923.24 lei 6-8 săpt. |
Din seria Solid Mechanics and Its Applications
- 20% Preț: 698.07 lei
- 24% Preț: 800.13 lei
- 15% Preț: 621.74 lei
- 15% Preț: 634.43 lei
- 18% Preț: 1092.61 lei
- 15% Preț: 625.40 lei
- 18% Preț: 1087.24 lei
- 20% Preț: 573.16 lei
- 18% Preț: 1561.69 lei
- 17% Preț: 459.39 lei
- 18% Preț: 932.43 lei
- 18% Preț: 726.27 lei
- Preț: 739.82 lei
- 18% Preț: 764.59 lei
- Preț: 394.68 lei
- 15% Preț: 620.78 lei
- 24% Preț: 784.81 lei
- 15% Preț: 624.92 lei
- 18% Preț: 930.57 lei
- 18% Preț: 1192.87 lei
- 18% Preț: 713.22 lei
- 18% Preț: 1197.65 lei
- 18% Preț: 1200.69 lei
- 18% Preț: 923.69 lei
- 18% Preț: 880.46 lei
- 18% Preț: 936.85 lei
- 20% Preț: 967.16 lei
- 18% Preț: 926.28 lei
- 18% Preț: 1204.06 lei
- 18% Preț: 934.73 lei
- 18% Preț: 936.85 lei
- 18% Preț: 886.90 lei
- 18% Preț: 1191.67 lei
- 18% Preț: 923.98 lei
Preț: 923.24 lei
Preț vechi: 1125.90 lei
-18% Nou
Puncte Express: 1385
Preț estimativ în valută:
176.71€ • 184.17$ • 147.10£
176.71€ • 184.17$ • 147.10£
Carte tipărită la comandă
Livrare economică 04-18 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792319498
ISBN-10: 0792319494
Pagini: 284
Ilustrații: X, 284 p.
Dimensiuni: 210 x 297 x 18 mm
Greutate: 0.59 kg
Ediția:1992
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Solid Mechanics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 0792319494
Pagini: 284
Ilustrații: X, 284 p.
Dimensiuni: 210 x 297 x 18 mm
Greutate: 0.59 kg
Ediția:1992
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Solid Mechanics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1 Vectors.- 1.1 Introduction to vector algebra.- 1.2 The scalar product.- 1.3 The vector product.- 1.4 Applications of vectors to forces.- 1.5 Triple products.- 1.6 The index notation for vectors.- 1.7 Vector differential calculus.- 1.8 Vector integral calculus.- 2 Cartesian Tensors.- 2.1 Introduction.- 2.2 Rotation of Cartesian coordinates.- 2.3 Cartesian tensors.- 2.4 Properties of tensors.- 2.5 The rotation tensor.- 2.6 Isotropic tensors.- 2.7 Second order symmetric tensors.- 3 The Analysis of Stress.- 3.1 Introduction.- 3.2 The stress tensor.- 3.3 Principal axes.- 3.4 Maximum normal and shear stresses.- 3.5 Plane stress.- 3.6 Photoelastic measurement of principal stresses.- 4 The Analysis of Strain.- 4.1 The strain tensor.- 4.2 Physical interpretation of the strain tensor.- 4.3 Principal axes, principal strains.- 4.4 Principal strains and the strain rosette.- 4.5 The compatibility equations for strain.- 5 Linear Elasticity.- 5.1 Hooke’s law and the simple tension experiment.- 5.2 The governing equations of linear eleasticity.- 5.3 Simple solutions.- 5.4 The Navier equation in linear elasticity.- 6 Energy.- 6.1 Strain energy and work.- 6.2 Kirchoff’s uniqueness theorem.- 6.3 The reciprocal theorem.- 6.4 The Castigliano theorem.- 6.5 Potential energy.- 7 The General Torsion Problem.- 7.1 Introduction.- 7.2 The torsion function.- 7.3 Shearing stress in the torsion problem.- 7.4 Simple exact solutions in the torsion problem.- 7.5 Approximate formulae in the torsion problem.- 8 The Matrix Analysis of Structures.- 8.1 Introduction.- 8.2 Pin-jointed elements.- 8.3 Two and three dimensional pin-jointed structures.- 8.4 Beam elements.- 8.5 Equivalent nodal forces.- 9 Two Dimensional Elastostatics.- 9.1 Plane strain, plane stress and generalised plane stress.- 9.2 Exactsolutions to problems in plane strain.- 9.3 Approximations in two dimensional elastostatics.- Appendix 1 The Variational Calculus.- A1.1 The fundamental lemma.- A1.2 Functionals and the variational calculus.- A1.3 Construction of functionals.- A1.4 One dimensional fourth-order problems.- A1.5 Variational formulation of fourth-order problems.- References.