Solid Mechanics: An Introduction: Solid Mechanics and Its Applications, cartea 15
Autor J. P. Warden Limba Engleză Hardback – 31 aug 1992
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 925.37 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 9 dec 2010 | 925.37 lei 6-8 săpt. | |
Hardback (1) | 931.26 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 31 aug 1992 | 931.26 lei 6-8 săpt. |
Din seria Solid Mechanics and Its Applications
- 20% Preț: 698.09 lei
- 24% Preț: 800.14 lei
- 15% Preț: 627.11 lei
- 15% Preț: 639.94 lei
- 18% Preț: 1102.11 lei
- 15% Preț: 630.83 lei
- 18% Preț: 1096.69 lei
- 20% Preț: 573.17 lei
- 18% Preț: 1575.27 lei
- 17% Preț: 459.40 lei
- 18% Preț: 940.53 lei
- 18% Preț: 732.57 lei
- Preț: 388.55 lei
- Preț: 739.84 lei
- 18% Preț: 771.21 lei
- Preț: 398.08 lei
- 15% Preț: 626.15 lei
- 24% Preț: 784.82 lei
- 15% Preț: 630.33 lei
- 18% Preț: 938.66 lei
- 18% Preț: 1203.25 lei
- 18% Preț: 719.41 lei
- 18% Preț: 1208.05 lei
- 18% Preț: 1211.11 lei
- 18% Preț: 931.71 lei
- 18% Preț: 888.11 lei
- 18% Preț: 945.00 lei
- 20% Preț: 975.57 lei
- 18% Preț: 934.33 lei
- 18% Preț: 1214.52 lei
- 18% Preț: 942.86 lei
- 18% Preț: 945.00 lei
- 18% Preț: 894.62 lei
- 18% Preț: 1202.02 lei
- 18% Preț: 926.32 lei
Preț: 931.26 lei
Preț vechi: 1135.68 lei
-18% Nou
Puncte Express: 1397
Preț estimativ în valută:
178.22€ • 185.13$ • 148.04£
178.22€ • 185.13$ • 148.04£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792319498
ISBN-10: 0792319494
Pagini: 284
Ilustrații: X, 284 p.
Dimensiuni: 210 x 297 x 18 mm
Greutate: 0.59 kg
Ediția:1992
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Solid Mechanics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 0792319494
Pagini: 284
Ilustrații: X, 284 p.
Dimensiuni: 210 x 297 x 18 mm
Greutate: 0.59 kg
Ediția:1992
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Solid Mechanics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1 Vectors.- 1.1 Introduction to vector algebra.- 1.2 The scalar product.- 1.3 The vector product.- 1.4 Applications of vectors to forces.- 1.5 Triple products.- 1.6 The index notation for vectors.- 1.7 Vector differential calculus.- 1.8 Vector integral calculus.- 2 Cartesian Tensors.- 2.1 Introduction.- 2.2 Rotation of Cartesian coordinates.- 2.3 Cartesian tensors.- 2.4 Properties of tensors.- 2.5 The rotation tensor.- 2.6 Isotropic tensors.- 2.7 Second order symmetric tensors.- 3 The Analysis of Stress.- 3.1 Introduction.- 3.2 The stress tensor.- 3.3 Principal axes.- 3.4 Maximum normal and shear stresses.- 3.5 Plane stress.- 3.6 Photoelastic measurement of principal stresses.- 4 The Analysis of Strain.- 4.1 The strain tensor.- 4.2 Physical interpretation of the strain tensor.- 4.3 Principal axes, principal strains.- 4.4 Principal strains and the strain rosette.- 4.5 The compatibility equations for strain.- 5 Linear Elasticity.- 5.1 Hooke’s law and the simple tension experiment.- 5.2 The governing equations of linear eleasticity.- 5.3 Simple solutions.- 5.4 The Navier equation in linear elasticity.- 6 Energy.- 6.1 Strain energy and work.- 6.2 Kirchoff’s uniqueness theorem.- 6.3 The reciprocal theorem.- 6.4 The Castigliano theorem.- 6.5 Potential energy.- 7 The General Torsion Problem.- 7.1 Introduction.- 7.2 The torsion function.- 7.3 Shearing stress in the torsion problem.- 7.4 Simple exact solutions in the torsion problem.- 7.5 Approximate formulae in the torsion problem.- 8 The Matrix Analysis of Structures.- 8.1 Introduction.- 8.2 Pin-jointed elements.- 8.3 Two and three dimensional pin-jointed structures.- 8.4 Beam elements.- 8.5 Equivalent nodal forces.- 9 Two Dimensional Elastostatics.- 9.1 Plane strain, plane stress and generalised plane stress.- 9.2 Exactsolutions to problems in plane strain.- 9.3 Approximations in two dimensional elastostatics.- Appendix 1 The Variational Calculus.- A1.1 The fundamental lemma.- A1.2 Functionals and the variational calculus.- A1.3 Construction of functionals.- A1.4 One dimensional fourth-order problems.- A1.5 Variational formulation of fourth-order problems.- References.