Sparse Representation, Modeling and Learning in Visual Recognition: Theory, Algorithms and Applications: Advances in Computer Vision and Pattern Recognition
Autor Hong Chengen Limba Engleză Hardback – 9 iun 2015
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 631.29 lei 6-8 săpt. | |
SPRINGER LONDON – 9 oct 2016 | 631.29 lei 6-8 săpt. | |
Hardback (1) | 637.42 lei 6-8 săpt. | |
SPRINGER LONDON – 9 iun 2015 | 637.42 lei 6-8 săpt. |
Din seria Advances in Computer Vision and Pattern Recognition
- 20% Preț: 759.60 lei
- 20% Preț: 978.13 lei
- 20% Preț: 241.87 lei
- 20% Preț: 867.13 lei
- 20% Preț: 641.45 lei
- 20% Preț: 646.47 lei
- 20% Preț: 1062.19 lei
- 20% Preț: 321.99 lei
- 20% Preț: 973.47 lei
- 20% Preț: 1151.09 lei
- 20% Preț: 636.92 lei
- 20% Preț: 631.62 lei
- 20% Preț: 633.72 lei
- 20% Preț: 639.35 lei
- 20% Preț: 633.72 lei
- 20% Preț: 658.76 lei
- 20% Preț: 744.75 lei
- 20% Preț: 901.68 lei
- 20% Preț: 809.07 lei
- 20% Preț: 653.10 lei
- 18% Preț: 931.26 lei
- 20% Preț: 639.21 lei
- 18% Preț: 934.33 lei
- 20% Preț: 979.08 lei
- 20% Preț: 641.78 lei
- 20% Preț: 595.16 lei
- 20% Preț: 634.50 lei
- 20% Preț: 645.02 lei
- 20% Preț: 1616.12 lei
- 20% Preț: 971.36 lei
- 20% Preț: 973.92 lei
- 20% Preț: 1041.03 lei
- 20% Preț: 965.20 lei
- 20% Preț: 627.42 lei
- 20% Preț: 642.77 lei
- 20% Preț: 631.75 lei
- 20% Preț: 976.20 lei
Preț: 637.42 lei
Preț vechi: 796.78 lei
-20% Nou
Puncte Express: 956
Preț estimativ în valută:
122.00€ • 127.99$ • 101.21£
122.00€ • 127.99$ • 101.21£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781447167136
ISBN-10: 1447167139
Pagini: 250
Ilustrații: XIV, 257 p. 73 illus.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.56 kg
Ediția:2015
Editura: SPRINGER LONDON
Colecția Springer
Seria Advances in Computer Vision and Pattern Recognition
Locul publicării:London, United Kingdom
ISBN-10: 1447167139
Pagini: 250
Ilustrații: XIV, 257 p. 73 illus.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.56 kg
Ediția:2015
Editura: SPRINGER LONDON
Colecția Springer
Seria Advances in Computer Vision and Pattern Recognition
Locul publicării:London, United Kingdom
Public țintă
ResearchCuprins
Part I: Introduction and Fundamentals.- Introduction.- The Fundamentals of Compressed Sensing.- Part II: Sparse Representation, Modeling and Learning.- Sparse Recovery Approaches.- Robust Sparse Representation, Modeling and Learning.- Efficient Sparse Representation and Modeling.- Part III: Visual Recognition Applications.- Feature Representation and Learning.- Sparsity Induced Similarity.- Sparse Representation and Learning Based Classifiers.- Part IV: Advanced Topics.- Beyond Sparsity.- Appendix A: Mathematics.- Appendix B: Computer Programming Resources for Sparse Recovery Approaches.- Appendix C: The source Code of Sparsity Induced Similarity.- Appendix D: Derivations.
Notă biografică
Dr. Hong Cheng is Professor in the School of Automation Engineering, and Deputy Executive Director of the Center for Robotics at the University of Electronic Science and Technology of China. His other publications include the Springer book Autonomous Intelligent Vehicles.
Textul de pe ultima copertă
This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision.
Topics and features:
Dr. Hong Cheng is Professor in the School of Automation Engineering, and Deputy Executive Director of the Center for Robotics at the University of Electronic Science and Technology of China. His other publications include the Springer book Autonomous Intelligent Vehicles.
Topics and features:
- Provides a thorough introduction to the fundamentals of sparse representation, modeling and learning, and the application of these techniques in visual recognition
- Describes sparse recovery approaches, robust and efficient sparse representation, and large-scale visual recognition
- Covers feature representation and learning, sparsity induced similarity, and sparse representation and learning-based classifiers
- Discusses low-rank matrix approximation, graphical models in compressed sensing, collaborative representation-based classification, and high-dimensional nonlinear learning
- Includes appendices outlining additional computer programming resources, and explaining the essential mathematics required to understand the book
Dr. Hong Cheng is Professor in the School of Automation Engineering, and Deputy Executive Director of the Center for Robotics at the University of Electronic Science and Technology of China. His other publications include the Springer book Autonomous Intelligent Vehicles.
Caracteristici
Describes the latest research trends in compressed sensing, covering sparse representation, modeling and learning Examines sensing applications in visual recognition, including sparsity induced similarity, and sparse coding-based classifying frameworks Discusses in detail the theory and algorithms of compressed sensing Includes supplementary material: sn.pub/extras