Spectral Mixture for Remote Sensing: Linear Model and Applications: Springer Remote Sensing/Photogrammetry
Autor Yosio Edemir Shimabukuro, Flávio Jorge Ponzonien Limba Engleză Hardback – 22 noi 2018
Chapter 1 addresses the basic concepts of spectral mixing, while chapters 2 and 3 discuss digital numbers and orbital sensors such as MODIS and Landsat MSS. Chapter 4 details the linear spectral mixing model, and chapter 5 talks about how to use this technique to create fraction images. Chapter 6 offers remote sensing applications of fraction images in deforestation monitoring, burned-area mapping, selective logging detection, and land-use/land-cover mapping. Chapter 7 gives some concluding thoughts on spectral mixing, and considers future uses in environmental remote sensing. This book will be of interest to students, teachers, and researchers using remote sensing for Earth observation and environmental modelling.
Din seria Springer Remote Sensing/Photogrammetry
- 15% Preț: 653.98 lei
- 24% Preț: 797.37 lei
- 24% Preț: 861.15 lei
- 15% Preț: 644.18 lei
- 24% Preț: 694.68 lei
- 18% Preț: 785.11 lei
- 18% Preț: 950.52 lei
- 18% Preț: 895.58 lei
- 18% Preț: 1112.60 lei
- 18% Preț: 946.87 lei
- 18% Preț: 1244.71 lei
- 18% Preț: 1114.02 lei
- 24% Preț: 845.12 lei
- 18% Preț: 1105.83 lei
- 20% Preț: 560.05 lei
- 18% Preț: 1043.14 lei
- 18% Preț: 944.34 lei
- 18% Preț: 888.18 lei
- 18% Preț: 892.46 lei
- 18% Preț: 1005.61 lei
- 24% Preț: 844.06 lei
Preț: 728.29 lei
Preț vechi: 958.28 lei
-24% Nou
Puncte Express: 1092
Preț estimativ în valută:
139.38€ • 143.79$ • 117.96£
139.38€ • 143.79$ • 117.96£
Carte tipărită la comandă
Livrare economică 01-07 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030020163
ISBN-10: 3030020169
Pagini: 96
Ilustrații: XIII, 80 p. 38 illus., 27 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.32 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Springer Remote Sensing/Photogrammetry
Locul publicării:Cham, Switzerland
ISBN-10: 3030020169
Pagini: 96
Ilustrații: XIII, 80 p. 38 illus., 27 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.32 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Springer Remote Sensing/Photogrammetry
Locul publicării:Cham, Switzerland
Cuprins
Chapter1: Basic concepts.- Chapter2: The origin of digital numbers (DN).- Chapter3: Orbital sensors.- Chapter4: Linear spectral mixing model.- Chapter5: Fraction images.- Chapter6: Applications of fraction images.- Chapter7: Final considerations.
Notă biografică
Dr. Yosio Edemir Shimabukuro holds a degree in Forest Engineering from the Federal Rural University of Rio de Janeiro (1972), a Masters in remote sensing from the National Institute for Space Research (1977), Ph.D. in Forest Sciences/Remote Sensing from Colorado State University (1987), and was a Post-Doctoral researcher at NASA Goddard Space Flight Center (1993). He is currently a Senior Researcher in the Remote Sensing Division (DSR), Earth Observation Coordination (OBT) at the National Institute for Space Research (INPE), and professor / supervisor of the Post-Graduate Course in Remote Sensing at INPE. He has experience in Forest Resources and Forestry Engineering, with emphasis on Nature Conservation, working mainly on the following topics: Remote Sensing, Geoprocessing, Forestry Engineering and Environmental Sciences. He developed the linear spectral mixing model for remote sensing data.
Flávio Jorge Ponzoni has worked as a researcher in the Remote Sensing Division at the National Institute for Space Research since 1985. His research interests have included the spectral characterization of vegetation, and recent studies that include the effect of multi-angularity in this characterization. Recently he has been dedicated to the absolute calibration of remotely located sensors, especially those of the CBERS program. In 2009, he joined the WGCV of the CEOS committee and has been involved in international calibration and data validation missions of the IVOS sub-group. He also works as a Professor of the Post-Graduate Course in Remote Sensing of INPE's Land Observation Coordination, teaching Radiometric Transformation of Orbital Data, Spectral Behavior of Targets, and Seminars in Remote Sensing.
Flávio Jorge Ponzoni has worked as a researcher in the Remote Sensing Division at the National Institute for Space Research since 1985. His research interests have included the spectral characterization of vegetation, and recent studies that include the effect of multi-angularity in this characterization. Recently he has been dedicated to the absolute calibration of remotely located sensors, especially those of the CBERS program. In 2009, he joined the WGCV of the CEOS committee and has been involved in international calibration and data validation missions of the IVOS sub-group. He also works as a Professor of the Post-Graduate Course in Remote Sensing of INPE's Land Observation Coordination, teaching Radiometric Transformation of Orbital Data, Spectral Behavior of Targets, and Seminars in Remote Sensing.
Textul de pe ultima copertă
This book explains in a didactic way the basic concepts of spectral mixing, digital numbers and orbital sensors, and then presents the linear modeling technique of spectral mixing and the generation of fractional images. In addition to presenting a theoretical basis for spectral mixing, the book provides examples of practical applications such as projects for estimating and monitoring deforested areas in the Amazon region. In its seven chapters, the book offers remote sensing techniques to understand the main concepts, methods, and limitations of spectral mixing for digital image processing.
Chapter 1 addresses the basic concepts of spectral mixing, while chapters 2 and 3 discuss digital numbers and orbital sensors such as MODIS and Landsat MSS. Chapter 4 details the linear spectral mixing model, and chapter 5 explains the use of this technique to create fraction images. Chapter 6 offers remote sensing applications of fraction images in deforestation monitoring, burned-areamapping, selective logging detection, and land-use/land-cover mapping. Chapter 7 gives some concluding thoughts on spectral mixing, and considers future uses in environmental remote sensing. This book will be of interest to students, teachers, and researchers using remote sensing for Earth observation and environmental modeling.
Chapter 1 addresses the basic concepts of spectral mixing, while chapters 2 and 3 discuss digital numbers and orbital sensors such as MODIS and Landsat MSS. Chapter 4 details the linear spectral mixing model, and chapter 5 explains the use of this technique to create fraction images. Chapter 6 offers remote sensing applications of fraction images in deforestation monitoring, burned-areamapping, selective logging detection, and land-use/land-cover mapping. Chapter 7 gives some concluding thoughts on spectral mixing, and considers future uses in environmental remote sensing. This book will be of interest to students, teachers, and researchers using remote sensing for Earth observation and environmental modeling.
Caracteristici
Offers remote sensing techniques to understand the main aspects of spectral mixing Presents the basic concepts and methods that explain spectral mixing, the spectral characterization of different objects for applications in digital image processing Discusses the development of techniques for the estimation and monitoring of deforested areas in the Amazon region