Cantitate/Preț
Produs

Sponges (Porifera): Progress in Molecular and Subcellular Biology, cartea 37

Editat de Werner E.G. Müller
en Limba Engleză Paperback – 21 oct 2012
Sponges (phylum Porifera) are known to be very rich sources for bioactive compounds, mainly secondary metabolites. Main efforts are devoted to cell- and mariculture of sponges to assure a sustainable exploitation of bioactive compounds from biological starting material. These activities are flanked by improved technologies to cultivate bacteria and fungi which are associated with the sponges. It is the hope that by elucidating the strategies of interaction between microorganisms and their host (sponge), by modern cell and molecular biological methods, a more comprehensive cultivation of the symbiotic organisms will be possible. The next step in the transfer of knowledge to biotechnological applications is the isolation, characterization and structural determination of the bioactive compounds by sophisticated chemical approaches.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 38720 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 21 oct 2012 38720 lei  6-8 săpt.
Hardback (1) 58375 lei  6-8 săpt.
  Springer Verlag – 10 iul 2003 58375 lei  6-8 săpt.

Din seria Progress in Molecular and Subcellular Biology

Preț: 38720 lei

Nou

Puncte Express: 581

Preț estimativ în valută:
7413 7734$ 6214£

Carte tipărită la comandă

Livrare economică 13-27 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642624711
ISBN-10: 3642624715
Pagini: 280
Ilustrații: XVIII, 258 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Progress in Molecular and Subcellular Biology, Marine Molecular Biotechnology

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Analysis of the Sponge [Porifera] Gene Repertoire: Implications for the Evolution of the Metazoan Body Plan.- 1 Introduction.- 2 Sponges.- 3 Adhesion Between Cells.- 4 Growth and Differentiation.- 5 Migration of Cells — Contraction in Cell Layers.- 6 Elements of a Neuronal Network.- 7 Secretion of Skeletal Elements.- 8 Morphogens.- 9 Apoptosis.- 10 Conclusion: Contribution to the Origin of the Metazoan Body Plan.- References.- Sponge-Associated Bacteria: General Overview and Special Aspects of Bacteria Associated with Halichondria panicea.- 1 Introduction.- 2 General Considerations.- 3 Bacteria Associated with Halichondria panicea.- 4 Conclusions.- References.- Microbial Diversity of Marine Sponges.- 1 Introduction.- 2 Sponge—Microbe Associations.- 3 Tools of Molecular Microbial Ecology.- 4 A Uniform Microbial Community in Sponges from Different Oceans.- 5 Biotechnological Potential of Sponge-Associated Microorganisms.- 6 Conclusions and Future Directions.- References.- Full Absolute Stereo structures of Natural Products Directly from Crude Extracts: the HPLC-MS/MS-NMR-CD ‘Triad’.- 1 Introduction.- 2 Exemplarily for Naphthylisoquinoline Alkaloids: Constitutions and Relative Configurations by LC-MS/MS-NMR.- 3 Complemented by the LC-CD Option for the Online Assignment of Absolute Configurations: the Triad Is Complete!.- 4 Application of the Triad to the Online Structural Elucidation of New Naphthylisoquinoline Alkaloids and Related Compounds.- 5 An Application to Natural Phenylanthraquinones — Including Quantum Chemical CD Calculations and Total Synthesis.- 6 Stereochemistry of Axially Chiral Biscarbazoles in Plant Extracts, by LC-CD Coupling and CD Calculations.- 7 Without (True) Stereogenic Axes or Centers, but Chiral: a Bis-Bibenzyl Macrocycle.- 8 First Timein Marine Natural Products Analysis: the Analytical Triad HPLC-MS/MS-NMR-CD.- 9 Conclusions.- References.- Bioactive Natural Products from Marine Invertebrates and Associated Fungi.- 1 Introduction: Some Current Issues of Marine Natural Products Research.- 2 Ecological Functions of Sponge Alkaloids.- 3 Pharmacologically Active Constituents from Marine Invertebrates.- 4 Sponge-Associated Fungi as a New Source for Bioactive Metabolites.- 5 Conclusions.- References.- Sustainable Use of Marine Resources: Cultivation of Sponges.- 1 Introduction.- 2 In Situ Cultivation of Bath Sponges.- 3 Sponge Farming.- 4 Ex Situ Maintenance of Sponges in Aquaria.- 5 In Vitro Cultivation of Sponges.- 6 Conclusions and Future Directions.- References.- Sustainable Production of Bioactive Compounds from Sponges: Primmorphs as Bioreactors.- 1 Introduction.- 2 Origin of Biologically Active Compounds from Sponges.- 3 Biologically Active Compounds from S. domuncula.- 4 The Primmorph System.- 5 Production of Bioactive Compounds in the Primmorph System.- 6 Future Directions.- 7 Conclusions.- References.- Approaches for a Sustainable Use of the Bioactive Potential in Sponges: Analysis of Gene Clusters, Differential Display of mRNA and DNA Chips.- 1 Introduction.- 2 Genome of Porifera.- 3 Nonrandom Distribution of Dinucleotide Repeats.- 4 Burst of Gene Duplication.- 5 Approaches to Identify Genes Involved in the Synthesis of Bioactive Compounds.- 6 Conclusions.- References.- Sorbicillactone A: a Structurally Unprecedented Bioactive Novel-Type Alkaloid from a Sponge-Derived Fungus.- 1 Introduction.- 2 Isolation and Cultivation of the Fungus.- 3 Online Analysis of the Extract by the Triad LC-MS/MS-NMR-CD: Hints at a Novel Structural Type.- 4 Isolation of the New Compound and Completion of the Structural Elucidation.- 5 Sorbicillactone A: a Unique, Novel-Type Structure and Its Presumable Biosynthetic Origin.- 6 Sorbicillactone A: a Natural Product with Strong — and Selective — Bioactivities.- 7 Summary and Future Perspectives.- References.

Textul de pe ultima copertă

Sponges (phylum Porifera) are known to be very rich sources for bioactive compounds, mainly secondary metabolites. Main efforts are devoted to cell- and mariculture of sponges to assure a sustainable exploitation of bioactive compounds from biological starting material. These activities are flanked by improved technologies to cultivate bacteria and fungi which are associated with the sponges. It is the hope that by elucidating the strategies of interaction between microorganisms and their host (sponge), by modern cell and molecular biological methods, a more comprehensive cultivation of the symbiotic organisms will be possible. The next step in the transfer of knowledge to biotechnological applications is the isolation, characterization and structural determination of the bioactive compounds by sophisticated chemical approaches.

Caracteristici

This new subseries sets the scientific stage for the development of new drugs, materials and insights into the biology of marine organisms