Cantitate/Preț
Produs

Statistical Thermodynamics and Differential Geometry of Microstructured Materials: The IMA Volumes in Mathematics and its Applications, cartea 51

Editat de H. Ted Davis, Johannes C.C. Nitsche
en Limba Engleză Paperback – 6 noi 2011
Substances possessing heterogeneous microstructure on the nanometer and micron scales are scientifically fascinating and technologically useful. Examples of such substances include liquid crystals, microemulsions, biological matter, polymer mixtures and composites, vycor glasses, and zeolites. In this volume, an interdisciplinary group of researchers report their developments in this field. Topics include statistical mechanical free energy theories which predict the appearance of various microstructures, the topological and geometrical methods needed for a mathematical description of the subparts and dividing surfaces of heterogeneous materials, and modern computer-aided mathematical models and graphics for effective exposition of the salient features of microstructured materials.
Citește tot Restrânge

Din seria The IMA Volumes in Mathematics and its Applications

Preț: 63432 lei

Preț vechi: 74626 lei
-15% Nou

Puncte Express: 951

Preț estimativ în valută:
12143 12495$ 10236£

Carte tipărită la comandă

Livrare economică 28 februarie-14 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461383260
ISBN-10: 1461383269
Pagini: 172
Ilustrații: XV, 172 p.
Dimensiuni: 155 x 235 x 9 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: Springer
Colecția Springer
Seria The IMA Volumes in Mathematics and its Applications

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

The geometric calculus of variations and modelling natural phenomena.- Hyperbolic statistical analysis.- A crystallographic approach to 3-periodic minimal surfaces.- The conformation of fluid vesicles.- Harmonic maps for bumpy metrics.- Periodic surfaces that are extremal for energy functionals containing curvature functions.- The least gradient method for computing area-minimizing hypersurfaces.- Modelling of homogeneous sinters and some generalizations of plateau’s problem.- A generalization of a theorem of Delaunay on constant mean curvature surfaces.- Willmore surfaces and computers.- Difference versus Gaussian curvature energies; monolayer versus bilayer curvature energies; applications to vesicle stability.