Cantitate/Preț
Produs

Stochastic Evolution Systems: Linear Theory and Applications to Non-linear Filtering: Mathematics and its Applications, cartea 35

Autor B.L. Rozovskii
en Limba Engleză Hardback – 31 oct 1990
Descriere de la o altă ediție sau format:
Covering the general theory of linear stochastic evolution systems with unbounded drift and diffusion operators, this book sureys Ito's second-order parabolic equations and explores filtering problems for processes whose trajectories can be described by them.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 158922 lei  38-44 zile
  SPRINGER NETHERLANDS – 27 sep 2012 158922 lei  38-44 zile
Hardback (1) 39892 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 31 oct 1990 39892 lei  6-8 săpt.

Din seria Mathematics and its Applications

Preț: 39892 lei

Nou

Puncte Express: 598

Preț estimativ în valută:
7635 7869$ 6446£

Carte tipărită la comandă

Livrare economică 01-15 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792300373
ISBN-10: 0792300378
Pagini: 315
Ilustrații: XVIII, 315 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.67 kg
Ediția:1990
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications

Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

1 Examples and Auxiliary Results.- 1.0. Introduction.- 1.1. Examples of Stochastic Evolution Systems.- 1.2. Measurability and Integrability in Banach Spaces.- 1.3. Martingales in ?1.- 1.4. Diffusion Processes.- 2 Stochastic Integration in a Hilbert Space.- 2.0. Introduction.- 2.1. Martingales and Local Martingales.- 2.2. Stochastic Integrals with Respect to Square Integrable Martingale.- 2.3. Stochastic Integrable with Respect to a Local Martingale.- 2.4. An Energy Equality in a Rigged Hilbert Space.- 3 Linear Stochastic Evolution Systems in Hilbert Spaces.- 3.0. Introduction.- 3.1. Coercive Systems.- 3.2. Dissipative Systems.- 3.3. Uniqueness and the Markov Property.- 3.4. The First Boundary Problem for Ito’s Partial Differential Equations.- 4 Ito’S Second Order Parabolic Equations.- 4.0. Introduction.- 4.1. The Cauchy Problem for Superparabolic Ito’s Second Order Parabolic Equations.- 4.2. The Cauchy Problem for Ito’s Second Order Equations.- 4.3. The Forward Cauchy Problem and the Backward One in Weighted Sobolev Spaces.- 5 Ito’s Partial Differential Equations and Diffusion Processes.- 5.0. Introduction.- 5.1. The Method of Stochastic Characteristics.- 5.2. Inverse Diffusion Processes, the Method of Variation of Constants and the Liouville Equations.- 5.3. A Representation of a Density-valued Solution.- 6 Filtering Interpolation and Extrapolation of Diffusion Processes.- 6.0. Introduction.- 6.1. Bayes’ Formula and the Conditional Markov Property.- 6.2. The Forward Filtering Equation.- 6.3. The Backward Filtering Equation Interpolation and Extrapolation.- 7 Hypoellipticity of Ito’s Second Order Parabolic Equations.- 7.0. Introduction.- 7.1. Measure-valued Solution and Hypoellipticity under Generalized Hörmander’s Condition.- 7.2. The Filtering Transition Density and a Fundamental Solution of the Filtering Equation in Hypoelliptic and Superparabolic Cases.- Notes.- References.