Cantitate/Preț
Produs

Stochastic H2/H ∞ Control: A Nash Game Approach

Autor Weihai Zhang, Lihua Xie, Bor-Sen Chen
en Limba Engleză Hardback – 18 iul 2017
The H∞ control has been one of the important robust control approaches since the 1980s. This book extends the area to nonlinear stochastic H2/H∞ control, and studies more complex and practically useful mixed H2/H∞ controller synthesis rather than the pure H∞ control. Different from the commonly used convex optimization method, this book applies the Nash game approach to give necessary and sufficient conditions for the existence and uniqueness of the mixed H2/H∞ control. Researchers will benefit from our detailed exposition of the stochastic mixed H2/H∞ control theory, while practitioners can apply our efficient algorithms to address their practical problems.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 41410 lei  43-57 zile
  CRC Press – 30 iun 2020 41410 lei  43-57 zile
Hardback (1) 96162 lei  43-57 zile
  CRC Press – 18 iul 2017 96162 lei  43-57 zile

Preț: 96162 lei

Preț vechi: 129357 lei
-26% Nou

Puncte Express: 1442

Preț estimativ în valută:
18403 19116$ 15287£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781466573642
ISBN-10: 1466573643
Pagini: 388
Ilustrații: 38
Dimensiuni: 156 x 234 x 28 mm
Greutate: 0.68 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press

Cuprins

Mathematical Preliminaries. Linear Continuous-Time Stochastic H2 ∞ H1 Control. Linear Discrete-Time Stochastic H2  ∞ H1 Control. H2 ∞ H1 Control for Linear Discrete Time-Varying Stochastic Systems. Linear Markovian Jump Systems with Multiplicative Noise. Nonlinear Continuous-Time Stochastic H1 and H2 ∞ H1 Controls. Nonlinear Stochastic H1 and H2 ∞ H1 Filtering. Some Further Research Topics in Stochastic H2 ∞ H1 Control. Index.

Notă biografică

Weihai Zhang, Lihau Xie, Bor-Sen Chen

Descriere

The H∞ control has been one of the important robust control approaches since the 1980s. This book extends the area to nonlinear stochastic H2/H∞ control, and studies more complex and practically useful mixed H2/H∞ controller synthesis rather than the pure H∞ control. Different from the commonly used convex optimization method, this book applies the Nash game approach to give necessary and sufficient conditions for the existence and uniqueness of the mixed H2/H∞ control. Researchers will benefit from our detailed exposition of the stochastic mixed H2/H∞ control theory, while practitioners can apply our efficient algorithms to address their practical problems.