Cantitate/Preț
Produs

Stopped Random Walks: Limit Theorems and Applications: Springer Series in Operations Research and Financial Engineering

Autor Allan Gut
en Limba Engleză Paperback – 15 dec 2010
Classical probability theory provides information about random walks after a fixed number of steps. For applications, however, it is more natural to consider random walks evaluated after a random number of steps. Examples are sequential analysis, queueing theory, storage and inventory theory, insurance risk theory, reliability theory, and the theory of counters. Stopped Random Walks: Limit Theorems and Applications shows how this theory can be used to prove limit theorems for renewal counting processes, first passage time processes, and certain two-dimensional random walks, and to how these results are useful in various applications.
This second edition offers updated content and an outlook on further results, extensions and generalizations. A new chapter examines nonlinear renewal processes in order to present the analagous theory for perturbed random walks, modeled as a random walk plus “noise”.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 39102 lei  6-8 săpt.
  Springer – 15 dec 2010 39102 lei  6-8 săpt.
Hardback (1) 39640 lei  6-8 săpt.
  Springer – 27 feb 2009 39640 lei  6-8 săpt.

Din seria Springer Series in Operations Research and Financial Engineering

Preț: 39102 lei

Nou

Puncte Express: 587

Preț estimativ în valută:
7483 7792$ 6324£

Carte tipărită la comandă

Livrare economică 11-25 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781441927736
ISBN-10: 1441927735
Pagini: 280
Ilustrații: XIV, 263 p.
Dimensiuni: 178 x 235 x 15 mm
Greutate: 0.49 kg
Ediția:Softcover reprint of hardcover 2nd ed. 2009
Editura: Springer
Colecția Springer
Seria Springer Series in Operations Research and Financial Engineering

Locul publicării:New York, NY, United States

Public țintă

Graduate

Cuprins

Limit Theorems for Stopped Random Walks.- Renewal Processes and Random Walks.- Renewal Theory for Random Walks with Positive Drift.- Generalizations and Extensions.- Functional Limit Theorems.- Perturbed Random Walks.

Recenzii

From the reviews of the second edition:
“Stopped random walks occur in sequential analysis renewal theory and queueing theory several applications are discussed in the text. … The book under review is the second edition of a book first published in 1988 … . lengthy bibliography from the first edition has been brought up to date. … an excellent reference and its material is still worthy of study.” (Thomas Polaski, Mathematical Reviews, Issue 2010 f)
“This is definitely a book for the specialist in the field. … It would suit an academic or a researcher … seeking to use random walks as a tool for some real-world problem. … the material is very thorough and there are plentiful references. All results are rigorously established, either by a formal proof or by pointing the reader in the right direction. It will enable any researcher to be right up to date with the latest developments in the field.” (F. McGonigal, Journal of the Operational Research Society, Vol. 62 (2), 2011)

Notă biografică

Dr. Allan Gut is a professor of mathematical statistics at Uppsala University in Sweden. He has published many numerous articles, and has authored and co-authored six books, four of which were published by Springer. Three of those books, including the first edition of this book, have sold out, and Probability: A Graduate Course, published in 2005, is selling well.

Textul de pe ultima copertă

Classical probability theory provides information about random walks after a fixed number of steps. For applications, however, it is more natural to consider random walks evaluated after a random number of steps. Stopped Random Walks: Limit Theorems and Applications shows how this theory can be used to prove limit theorems for renewal counting processes, first passage time processes, and certain two-dimensional random walks, as well as how these results may be used in a variety of applications.
The present second edition offers updated content and an outlook on further results, extensions and generalizations. A new chapter introduces nonlinear renewal processes and the theory of perturbed random walks, which are modeled as random walks plus "noise".
This self-contained research monograph is motivated by numerous examples and problems. With its concise blend of material and over 300 bibliographic references, the book provides a unified and fairly complete treatment of the area. The book may be used in the classroom as part of a course on "probability theory", "random walks" or "random walks and renewal processes", as well as for self-study.
From the reviews:
"The book provides a nice synthesis of a lot of useful material."
--American Mathematical Society
"...[a] clearly written book, useful for researcher and student."
--Zentralblatt MATH

Caracteristici

Second edition features a new chapter on perturbed random walks, which are modeled as random walks plus “noise” Presents updates to the first edition, including an outlook on further results, extensions, and generalizations on the subject Close to 100 additional bibliographic references added to some 200 original ones Concise blend of material useful for both the researcher and student of probability theory Self-contained text motivated by examples and problems May be used in the classroom or for self-study Includes supplementary material: sn.pub/extras