Cantitate/Preț
Produs

Subsystems of Second Order Arithmetic: Perspectives in Logic

Autor Stephen G. Simpson
en Limba Engleză Paperback – 17 feb 2010
Almost all of the problems studied in this book are motivated by an overriding foundational question: What are the appropriate axioms for mathematics? Through a series of case studies, these axioms are examined to prove particular theorems in core mathematical areas such as algebra, analysis, and topology, focusing on the language of second-order arithmetic, the weakest language rich enough to express and develop the bulk of mathematics. In many cases, if a mathematical theorem is proved from appropriately weak set existence axioms, then the axioms will be logically equivalent to the theorem. Furthermore, only a few specific set existence axioms arise repeatedly in this context, which in turn correspond to classical foundational programs. This is the theme of reverse mathematics, which dominates the first half of the book. The second part focuses on models of these and other subsystems of second-order arithmetic.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 41906 lei  6-8 săpt.
  Cambridge University Press – 17 feb 2010 41906 lei  6-8 săpt.
Hardback (1) 98240 lei  6-8 săpt.
  Cambridge University Press – 28 mai 2009 98240 lei  6-8 săpt.

Din seria Perspectives in Logic

Preț: 41906 lei

Nou

Puncte Express: 629

Preț estimativ în valută:
8021 8411$ 6628£

Carte tipărită la comandă

Livrare economică 29 ianuarie-12 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780521150149
ISBN-10: 0521150140
Pagini: 464
Dimensiuni: 156 x 234 x 24 mm
Greutate: 0.64 kg
Ediția:Revised
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Perspectives in Logic

Locul publicării:New York, United States

Cuprins

List of tables; Preface; Acknowledgements; 1. Introduction; Part I. Development of Mathematics within Subsystems of Z2: 2. Recursive comprehension; 3. Arithmetical comprehension; 4. Weak König's lemma; 5. Arithmetical transfinite recursion; 6. π11 comprehension; Part II. Models of Subsystems of Z2: 7. β-models; 8. ω-models; 9. Non-ω-models; Part III. Appendix: 10. Additional results; Bibliography; Index.

Descriere

Through a series of case studies, this volume examines these axioms to prove particular theorems in core mathematical areas.