The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis: Classics in Mathematics
Autor Lars Hörmanderen Limba Engleză Paperback – 7 iul 2003
Din seria Classics in Mathematics
- Preț: 404.18 lei
- Preț: 428.05 lei
- Preț: 400.47 lei
- Preț: 404.34 lei
- Preț: 402.27 lei
- Preț: 422.11 lei
- Preț: 438.87 lei
- Preț: 431.56 lei
- Preț: 425.80 lei
- Preț: 429.61 lei
- Preț: 421.72 lei
- Preț: 425.80 lei
- Preț: 422.90 lei
- Preț: 427.49 lei
- Preț: 421.17 lei
- Preț: 415.39 lei
- Preț: 485.07 lei
- Preț: 437.72 lei
- Preț: 444.47 lei
- Preț: 440.39 lei
- Preț: 447.73 lei
- Preț: 438.10 lei
- Preț: 509.50 lei
- Preț: 418.83 lei
- Preț: 436.74 lei
- Preț: 446.37 lei
- Preț: 430.59 lei
- Preț: 421.93 lei
- Preț: 429.06 lei
- Preț: 431.56 lei
- Preț: 457.36 lei
- Preț: 429.99 lei
- Preț: 504.66 lei
- Preț: 418.07 lei
- Preț: 428.07 lei
- Preț: 427.33 lei
- Preț: 437.50 lei
- Preț: 425.80 lei
- Preț: 438.26 lei
- Preț: 408.61 lei
- Preț: 432.51 lei
- Preț: 429.61 lei
- Preț: 435.20 lei
- Preț: 428.68 lei
- Preț: 437.12 lei
- Preț: 438.69 lei
Preț: 433.31 lei
Nou
Puncte Express: 650
Preț estimativ în valută:
82.92€ • 86.05$ • 69.31£
82.92€ • 86.05$ • 69.31£
Carte tipărită la comandă
Livrare economică 15-29 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540006626
ISBN-10: 3540006621
Pagini: 456
Ilustrații: XI, 440 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.7 kg
Ediția:2nd ed. 2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Classics in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540006621
Pagini: 456
Ilustrații: XI, 440 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.7 kg
Ediția:2nd ed. 2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Classics in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. Test Functions.- Summary.- 1.1. A review of Differential Calculus.- 1.2. Existence of Test Functions.- 1.3. Convolution.- 1.4. Cutoff Functions and Partitions of Unity.- Notes.- II. Definition and Basic Properties of Distributions.- Summary.- 2.1. Basic Definitions.- 2.2. Localization.- 2.3. Distributions with Compact Support.- Notes.- III. Differentiation and Multiplication by Functions.- Summary.- 3.1. Definition and Examples.- 3.2. Homogeneous Distributions.- 3.3. Some Fundamental Solutions.- 3.4. Evaluation of Some Integrals.- Notes.- IV. Convolution.- Summary.- 4.1. Convolution with a Smooth Function.- 4.2. Convolution of Distributions.- 4.3. The Theorem of Supports.- 4.4. The Role of Fundamental Solutions.- 4.5. Basic Lp Estimates for Convolutions.- Notes.- V. Distributions in Product Spaces.- Summary.- 5.1. Tensor Products.- 5.2. The Kernel Theorem.- Notes.- VI. Composition with Smooth Maps.- Summary.- 6.1. Definitions.- 6.2. Some Fundamental Solutions.- 6.3. Distributions ona Manifold.- 6.4. The Tangent and Cotangent Bundles.- Notes.- VII. The Fourier Transformation.- Summary.- 7.1. The Fourier Transformation in ? and in ?’.- 7.2. Poisson’s Summation Formula and Periodic Distributions.- 7.3. The Fourier-Laplace Transformation in ?’.- 7.4. More General Fourier-Laplace Transforms.- 7.5. The Malgrange Preparation Theorem.- 7.6. Fourier Transforms of Gaussian Functions.- 7.7. The Method of Stationary Phase.- 7.8. Oscillatory Integrals.- 7.9. H(s), Lp and Hölder Estimates.- Notes.- VIII. Spectral Analysis of Singularities.- Summary.- 8.1. The Wave Front Set.- 8.2. A Review of Operations with Distributions.- 8.3. The Wave Front Set of Solutions of Partial Differential Equations.- 8.4. The Wave Front Set with Respect to CL.- 8.5. Rules of Computation for WFL.- 8.6. WFL for Solutions of Partial Differential Equations.- 8.7. Microhyperbolicity.- Notes.- IX. Hyperfunctions.- Summary.- 9.1. Analytic Functionals.- 9.2. General Hyperfunctions.- 9.3. The Analytic WaveFront Set of a Hyperfunction.- 9.4. The Analytic Cauchy Problem.- 9.5. Hyperfunction Solutions of Partial Differential Equations.- 9.6. The Analytic Wave Front Set and the Support.- Notes.- Exercises.- Answers and Hints to All the Exercises.- Index of Notation.