Cantitate/Preț
Produs

Combinatorial Theory: Classics in Mathematics

Autor Martin Aigner
en Limba Engleză Paperback – 16 dec 1996
It is now generally recognized that the field of combinatorics has, over the past years, evolved into a fully-fledged branch of discrete mathematics whose potential with respect to computers and the natural sciences is only beginning to be realized. Still, two points seem to bother most authors: The apparent difficulty in defining the scope of combinatorics and the fact that combinatorics seems to consist of a vast variety of more or less unrelated methods and results. As to the scope of the field, there appears to be a growing consensus that combinatorics should be divided into three large parts: (a) Enumeration, including generating functions, inversion, and calculus of finite differences; (b) Order Theory, including finite posets and lattices, matroids, and existence results such as Hall's and Ramsey's; (c) Configurations, including designs, permutation groups, and coding theory. The present book covers most aspects of parts (a) and (b), but none of (c). The reasons for excluding (c) were twofold. First, there exist several older books on the subject, such as Ryser [1] (which I still think is the most seductive introduction to combinatorics), Hall [2], and more recent ones such as Cameron-Van Lint [1] on groups and designs, and Blake-Mullin [1] on coding theory, whereas no compre­ hensive book exists on (a) and (b).
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 40353 lei  6-8 săpt.
  Springer – 24 apr 2012 40353 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 16 dec 1996 43156 lei  6-8 săpt.

Din seria Classics in Mathematics

Preț: 43156 lei

Nou

Puncte Express: 647

Preț estimativ în valută:
8259 8520$ 6990£

Carte tipărită la comandă

Livrare economică 05-19 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540617877
ISBN-10: 3540617876
Pagini: 500
Ilustrații: X, 483 p.
Dimensiuni: 155 x 235 x 26 mm
Greutate: 0.66 kg
Ediția:Reprint of the 1st ed. Berlin Heidelberg New York 1979
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Classics in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Preliminaries.- 1. Sets.- 2. Graphs.- 3. Posets.- 4. Miscellaneous Notation.- I. Mappings.- 1. Classes of Mappings.- 2. Fundamental Orders.- 3. Permutations.- 4. Patterns.- Notes.- II. Lattices.- 1. Distributive Lattices.- 2. Modular and Semimodular Lattices.- 3. Geometric Lattices.- 4. The Fundamental Examples.- Notes.- III. Counting Functions.- 1. The Elementary Counting Coefficients.- 2. Recursion and Inversion.- 3. Binomial Sequences.- 4. Order Functions.- Notes.- IV. Incidence Function.- 1. The Incidence Algebra.- 2. Möbius Inversion.- 3. The Möbius Function.- 4. Valuations.- Notes.- V. Generating Functions.- 1. Ordered Structures.- 2. Unordered Structures.- 3. G-patterns.- 4. G, H-patterns.- Notes.- VI. Matroids: Introduction.- 1. Fundamental Concepts.- 2. Fundamental Examples.- 3. Construction of Matroids.- 4. Duality and Connectivity.- Notes.- VII. Matroids: Further Theory.- 1. Linear Matroids.- 2. Binary Matroids.- 3. Graphic Matroids.- 4. Transversal Matroids.- Notes.- VIII. Combinatorial Order Theory.- 1. Maximum-Minimum Theorems.- 2. Transversal Theorems.- 3. Sperner Theorems.- 4. Ramsey Theorems.- Notes.- List of Symbols.

Notă biografică

Biography of Martin Aigner
Martin Aigner received his Ph.D. in Mathematics in 1965 from the University of Vienna. He then spent five years in the United States, the last two at the University of North Carolina at Chapel Hill where he was introduced to the combinatorial world (which he has never left since) by G. C. Rota and the late R. C. Bose. After extensive travels he returned to Europe and spent three years at the University of Tübingen with a senior fellowship of the German Science Foundation. Since 1974 he has been a Professor of Mathematics at the Free University of Berlin.
Martin Aigner has published in various fields of combinatorics and graph theory and is the author of several monographs on discrete mathematics, graph theory and the theory of search.

Textul de pe ultima copertă

Reihentext + Combinatorial Theory From the reviews: "This book presents a very good introduction to combinatorics. It covers most aspects of enumeration and order theory,... It is divided into three parts. The first part presents the basic material on mappings and posets... The second part deals with enumeration ... Finally the third part treats of the order-theoretic aspects ... In the text examples are given and at the end of each chapter valuable notes, also very good selected exercises. They constitute an organic part of the book. This book can warmly be recommended first of all to students interested in combinatorics. A two semester course can also be based on it." (Publicationes Mathematicae Debrecen)