Cantitate/Preț
Produs

Geometric Measure Theory: Classics in Mathematics

Autor Herbert Federer
en Limba Engleză Paperback – 5 ian 1996
From the reviews: "... Federer's timely and beautiful book indeed fills the need for a comprehensive treatise on geometric measure theory, and his detailed exposition leads from the foundations of the theory to the most recent discoveries. ... The author writes with a distinctive style which is both natural and powerfully economical in treating a complicated subject. This book is a major treatise in mathematics and is essential in the working library of the modern analyst."
Bulletin of the London Mathematical Society 
Citește tot Restrânge

Din seria Classics in Mathematics

Preț: 44447 lei

Nou

Puncte Express: 667

Preț estimativ în valută:
8506 8775$ 7199£

Carte tipărită la comandă

Livrare economică 05-19 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540606567
ISBN-10: 3540606564
Pagini: 700
Ilustrații: IV, 677 p.
Dimensiuni: 155 x 235 x 40 mm
Greutate: 0.96 kg
Ediția:Reprint of the 1st ed. Berlin, Heidelberg, New York 1969
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Classics in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Introduction Chapter 1 Grassmann algebra 1.1 Tensor products 1.2 Graded algebras 1.3 Teh exterior algebra of a vectorspace 1.4 Alternating forms and duality 1.5 Interior multiplications 1.6 Simple m-vectors 1.8 Mass and comass 1.9 The symmetric algebra of a vectorspace 1.10 Symmetric forms and polynomial functions Chapter 2 General measure theory 2.1 Measures and measurable sets 2.2 Borrel and Suslin sets 2.3 Measurable functions 2.4 Lebesgue integrations 2.5 Linear functionals 2.6 Product measures 2.7 Invariant measures 2.8 Covering theorems 2.9 Derivates 2.10 Caratheodory's construction Chapter 3 Rectifiability 3.1 Differentials and tangents 3.2 Area and coarea of Lipschitzian maps 3.3 Structure theory 3.4 Some properties of highly differentiable functions Chapter 4 Homological integration theory 4.1 Differential forms and currents 4.2 Deformations and compactness 4.3 Slicing 4.4 Homology groups 4.5 Normal currents of dimension n in R(-63) superscript n Chapter 5 Applications to thecalculus of variations 5.1 Integrands and minimizing currents 5.2 Regularity of solutions of certain differential equations 5.3 Excess and smoothness 5.4 Further results on area minimizing currents Bibliography Glossary of some standard notations List of basic notations defined in the text Index

Recenzii

 

Notă biografică

Biography of Herbert Federer
Herbert Federer was born on July 23, 1920, in Vienna. After emigrating to the US in 1938, he studied mathematics and physics at the University of California, Berkeley. Affiliated to Brown University, Providence since 1945, he is now Professor Emeritus there. 
The major part of Professor Federer's scientific effort has been directed to the development of the subject of Geometric Measure Theory, with its roots and applications in classical geometry and analysis, yet in the functorial spirit of modern topology and algebra. His work includes more than thirty research papers published between 1943 and 1986, as well as this book.