Cantitate/Preț
Produs

The Asymptotic Behaviour of Semigroups of Linear Operators: Operator Theory: Advances and Applications, cartea 88

Autor Jan van Neerven
en Limba Engleză Hardback – 30 iul 1996

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 62782 lei  6-8 săpt.
  Birkhäuser Basel – oct 2011 62782 lei  6-8 săpt.
Hardback (1) 63395 lei  6-8 săpt.
  Birkhäuser Basel – 30 iul 1996 63395 lei  6-8 săpt.

Din seria Operator Theory: Advances and Applications

Preț: 63395 lei

Preț vechi: 74583 lei
-15% Nou

Puncte Express: 951

Preț estimativ în valută:
12138 12639$ 10071£

Carte tipărită la comandă

Livrare economică 14-28 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783764354558
ISBN-10: 3764354550
Pagini: 256
Ilustrații: XII, 241 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.54 kg
Ediția:1996
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Operator Theory: Advances and Applications

Locul publicării:Basel, Switzerland

Public țintă

Research

Cuprins

1. Spectral bound and growth bound.- 1.1. C0—semigroups and the abstract Cauchy problem.- 1.2. The spectral bound and growth bound of a semigroup.- 1.3. The Laplace transform and its complex inversion.- 1.4. Positive semigroups.- Notes.- 2. Spectral mapping theorems.- 2.1. The spectral mapping theorem for the point spectrum.- 2.2. The spectral mapping theorems of Greiner and Gearhart.- 2.3. Eventually uniformly continuous semigroups.- 2.4. Groups of non-quasianalytic growth.- 2.5. Latushkin - Montgomery-Smith theory.- Notes.- 3. Uniform exponential stability.- 3.1. The theorem of Datko and Pazy.- 3.2. The theorem of Rolewicz.- 3.3. Characterization by convolutions.- 3.4. Characterization by almost periodic functions.- 3.5. Positive semigroups on Lp-spaces.- 3.6. The essential spectrum.- Notes Ill.- 4. Boundedness of the resolvent.- 4.1. The convexity theorem of Weis and Wrobel.- 4.2. Stability and boundedness of the resolvent.- 4.3. Individual stability in B-convex Banach spaces.- 4.4. Individual stability in spaces with the analytic RNP.- 4.5. Individual stability in arbitrary Banach spaces.- 4.6. Scalarly integrable semigroups.- Notes.- 5. Countability of the unitary spectrum.- 5.1. The stability theorem of Arendt, Batty, Lyubich, and V?.- 5.2. The Katznelson-Tzafriri theorem.- 5.3. The unbounded case.- 5.4. Sets of spectral synthesis.- 5.5. A quantitative stability theorem.- 5.6. A Tauberian theorem for the Laplace transform.- 5.7. The splitting theorem of Glicksberg and DeLeeuw.- Notes.- Append.- Al. Fractional powers.- A2. Interpolation theory.- A3. Banach lattices.- A4. Banach function spaces.- References.- Symbols.