The Geometry of Higher-Order Hamilton Spaces: Applications to Hamiltonian Mechanics: Fundamental Theories of Physics, cartea 132
Autor R. Mironen Limba Engleză Hardback – 31 oct 2003
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 620.47 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 18 sep 2012 | 620.47 lei 6-8 săpt. | |
Hardback (1) | 626.36 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 31 oct 2003 | 626.36 lei 6-8 săpt. |
Din seria Fundamental Theories of Physics
- Preț: 495.14 lei
- 20% Preț: 1002.35 lei
- Preț: 414.40 lei
- 20% Preț: 819.48 lei
- 18% Preț: 756.93 lei
- 18% Preț: 927.84 lei
- 18% Preț: 923.24 lei
- 24% Preț: 794.89 lei
- 15% Preț: 572.92 lei
- 18% Preț: 921.25 lei
- 18% Preț: 1194.41 lei
- 15% Preț: 570.99 lei
- 18% Preț: 1200.55 lei
- 18% Preț: 919.68 lei
- Preț: 383.65 lei
- 18% Preț: 927.54 lei
- 18% Preț: 1205.44 lei
- 18% Preț: 927.54 lei
- 18% Preț: 925.98 lei
- 18% Preț: 921.69 lei
- 15% Preț: 629.50 lei
- 18% Preț: 1196.70 lei
- 18% Preț: 968.15 lei
- 18% Preț: 919.25 lei
- 15% Preț: 621.90 lei
- 15% Preț: 618.57 lei
- Preț: 380.64 lei
- 18% Preț: 757.84 lei
- Preț: 380.64 lei
- 15% Preț: 630.48 lei
- Preț: 386.44 lei
- 24% Preț: 586.68 lei
- 15% Preț: 626.49 lei
- 18% Preț: 1192.87 lei
Preț: 626.36 lei
Preț vechi: 736.89 lei
-15% Nou
Puncte Express: 940
Preț estimativ în valută:
119.87€ • 126.10$ • 100.02£
119.87€ • 126.10$ • 100.02£
Carte tipărită la comandă
Livrare economică 09-23 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781402015748
ISBN-10: 1402015747
Pagini: 264
Ilustrații: XVI, 247 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.54 kg
Ediția:2003
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Fundamental Theories of Physics
Locul publicării:Dordrecht, Netherlands
ISBN-10: 1402015747
Pagini: 264
Ilustrații: XVI, 247 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.54 kg
Ediția:2003
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Fundamental Theories of Physics
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1 Geometry of the k-Tangent Bundle TkM.- 1.1 The Category of k-Accelerations Bundles.- 1.2 Liouville Vector Fields. k-Semisprays.- 1.3 Nonlinear Connections.- 1.4 The Dual Coefficients of a Nonlinear Connection.- 1.5 The Determination of a Nonlinear Connection.- 1.6 d-Tensor Fields. N-Linear Connections.- 1.7 Torsion and Curvature.- 2 Lagrange Spaces of Higher Order.- 2.1 Lagrangians of Order k.- 2.2 Variational Problem.- 2.3 Higher Order Energies.- 2.4 Jacobi-Ostrogradski Momenta.- 2.5 Higher Order Lagrange Spaces.- 2.6 Canonical Metrical N-Connections.- 2.7 Generalized Lagrange Spaces of Order k.- 3 Finsler Spaces of Order k.- 3.1 Spaces F(k)n.- 3.2 Cartan Nonlinear Connection in F(k)n.- 3.3 The Cartan Metrical N-Linear Connection.- 4 The Geometry of the Dual of k-Tangent Bundle.- 4.1 The Dual Bundle (T*k M, ?*k, M).- 4.2 Vertical Distributions. Liouville Vector Fields.- 4.3 The Structures J and J*.- 4.4 Canonical Poisson Structures on T*kM.- 4.5 Homogeneity.- 5 The Variational Problem for the Hamiltonians of Order k.- 5.1 The Hamilton-Jacobi Equations.- 5.2 Zermelo Conditions.- 5.3 Higher Order Energies. Conservation of Energy ?k ?1(H).- 5.4 The Jacobi-Ostrogradski Momenta.- 5.5 Nöther Type Theorems.- 6 Dual Semispray. Nonlinear Connections.- 6.1 Dual Semispray.- 6.2 Nonlinear Connections.- 6.3 The Dual Coefficients of the Nonlinear Connection N.- 6.4 The Determination of the Nonlinear Connection by a Dual k-Semispray.- 6.5 Lie Brackets. Exterior Differential.- 6.6 The Almost Product Structure ?. The Almost Contact Structure $$\mathbb{F}$$.- 6.7 The Riemannian Structure G on T*kM.- 6.8 The Riemannian Almost Contact Structure $$(\mathop \mathbb{G}\limits^ \vee ,\mathop \mathbb{F}\limits^ \vee )$$.- 7 Linear Connections on the Manifold T*kM.- 7.1 The Algebraof Distinguished Tensor Fields.- 7.2 N-Linear Connections.- 7.3 The Torsion and Curvature of an N-Linear Connection.- 7.4 The Coefficients of a N-Linear Connection.- 7.5 The h-,??- and ?k-Covariant Derivatives in Local Adapted Basis.- 7.6 Ricci Identities. Local Expressions of d-Tensor of Curvature and Torsion. Bianchi Identities.- 7.7 Parallelism of the Vector Fields on the Manifold T*kM.- 7.8 Structure Equations of a N-Linear Connection.- 8 Hamilton Spaces of Order k ? 1.- 8.1 The Spaces H(k)n.- 8.2 The k-Tangent Structure J and the Adjoint k-Tangent Structure J*.- 8.3 The Canonical Poisson Structure of the Hamilton Space H(k)n.- 8.4 Legendre Mapping Determined by a Lagrange Space L(k)n= (M, L).- 8.5 Legendre Mapping Determined by a Hamilton Space of Order k.- 8.6 The Canonical Nonlinear Connection of the Space H(k)n.- 8.7 Canonical Metrical N-Linear Connection of the Space H(k)n.- 8.8 The Hamilton Space H(k)n of Electrodynamics.- 8.9 The Riemannian Almost Contact Structure Determined by the Hamilton Space H(k)n.- 9 Subspaces in Hamilton Spaces of Order k.- 9.1 Submanifolds $${T^{*k}}\mathop M\limits^ \vee$$ in the Manifold T*kM.- 9.2 Hamilton Subspaces $${{\mathop H\limits^ \vee} ^{(k)m}}$$in H(k)n. Darboux Frames.- 9.3 Induced Nonlinear Connection.- 9.4 The Relative Covariant Derivative.- 9.5 The Gauss-Weingarten Formula.- 9.6 The Gauss-Codazzi Equations.- 10 The Cartan Spaces of Order k as Dual of Finsler Spaces of Order k.- 10.1 C(k)n-Spaces.- 10.2 Geometrical Properties of the Cartan Spaces of Order k.- 10.3 Canonical Presymplectic Structures, Variational Problem of the Space C(kn).- 10.4 The Cartan Spaces C(k)n as Dual of Finsler Spaces F(k)n.- 10.5 Canonical Nonlinear Connection. N-Linear Connections.- 10.6 Parallelism of Vector Fields in Cartan SpaceC(kn).- 10.7 Structure Equations of Metrical Canonical N-Connection.- 10.8 Riemannian Almost Contact Structure of the Space C(kn).- 11 Generalized Hamilton and Cartan Spaces of Order k. Applications to Hamiltonian Relativistic Optics.- 11.1 The Space GH(kn).- 11.2 Metrical N-Linear Connections.- 11.3 Hamiltonian Relativistic Optics.- 11.4 The Metrical Almost Contact Structure of the Space GH(kn).- 11.5 Generalized Cartan Space of Order k.- References.
Recenzii
From the reviews:
"The book is devoted to an extensive study of formal-geometric properties of higher-order nondegenerate one-dimensional variational integrals. … The author’s approach is useful for the construction of geometric models … . The book is precisely written, very clear, in principle self-contained and can be understood by non-specialists." (Jan Chrastina, Zentralblatt MATH, Vol. 1044 (19), 2004)
"The book is devoted to an extensive study of formal-geometric properties of higher-order nondegenerate one-dimensional variational integrals. … The author’s approach is useful for the construction of geometric models … . The book is precisely written, very clear, in principle self-contained and can be understood by non-specialists." (Jan Chrastina, Zentralblatt MATH, Vol. 1044 (19), 2004)