Cantitate/Preț
Produs

The Mathematics of Nonlinear Programming: Undergraduate Texts in Mathematics

Autor Anthony L. Peressini, Francis E. Sullivan, J.J. Jr. Uhl
en Limba Engleză Hardback – 2 mar 1988
Nonlinear programming provides an excellent opportunity to explore an interesting variety of pure and solidly applicable mathematics, numerical analysis, and computing. This text develops some of the ideas and techniques involved in the optimization methods using calculus, leading to the study of convexity. This is followed by material on basic numerical methods, least squares, the Karush-Kuhn-Tucker theorem, penalty functions, and Lagrange multipliers. The authors have aimed their presentation at the student who has a working knowledge of matrix algebra and advanced calculus, but has had no previous exposure to optimization.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 51647 lei  6-8 săpt.
  Springer – 30 sep 2012 51647 lei  6-8 săpt.
Hardback (1) 52190 lei  6-8 săpt.
  Springer – 2 mar 1988 52190 lei  6-8 săpt.

Din seria Undergraduate Texts in Mathematics

Preț: 52190 lei

Preț vechi: 61401 lei
-15% Nou

Puncte Express: 783

Preț estimativ în valută:
10004 104100$ 8251£

Carte tipărită la comandă

Livrare economică 23 ianuarie-06 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387966144
ISBN-10: 0387966145
Pagini: 276
Ilustrații: X, 276 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.57 kg
Ediția:1988
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics

Locul publicării:New York, NY, United States

Public țintă

Professional/practitioner

Cuprins

1 Unconstrained Optimization via Calculus.- 1.1. Functions of One Variable.- 1.2. Functions of Several Variables.- 1.3. Positive and Negative Definite Matrices and Optimization.- 1.4. Coercive Functions and Global Minimizers.- 1.5. Eigenvalues and Positive Definite Matrices.- Exercises.- 2 Convex Sets and Convex Functions.- 2.1. Convex Sets.- 2.2. Some Illustrations of Convex Sets in Economics— Linear Production Models.- 2.3. Convex Functions.- 2.4. Convexity and the Arithmetic-Geometric Mean Inequality— An Introduction to Geometric Programming.- 2.5. Unconstrained Geometric Programming.- 2.6. Convexity and Other Inequalities.- Exercises.- 3 Iterative Methods for Unconstrained Optimization.- 3.1. Newton’s Method.- 3.2. The Method of Steepest Descent.- 3.3. Beyond Steepest Descent.- 3.4. Broyden’s Method.- 3.5. Secant Methods for Minimization.- Exercises.- 4 Least Squares Optimization.- 4.1. Least Squares Fit.- 4.2. Subspaces and Projections.- 4.3. Minimum Norm Solutions of Underdetermined Linear Systems.- 4.4. Generalized Inner Products and Norms; The Portfolio Problem.- Exercises.- 5 Convex Programming and the Karush-Kuhn-Tucker Conditions.- 5.1. Separation and Support Theorems for Convex Sets.- 5.2. Convex Programming; The Karush-Kuhn-Tucker Theorem.- 5.3. The Karush-Kuhn-Tucker Theorem and Constrained Geometric Programming.- 5.4. Dual Convex Programs.- 5.5. Trust Regions.- Exercises.- 6 Penalty Methods.- 6.1. Penalty Functions.- 6.2. The Penalty Method.- 6.3. Applications of the Penalty Function Method to Convex Programs.- Exercises.- 7 Optimization with Equality Constraints.- 7.1. Surfaces and Their Tangent Planes.- 7.2. Lagrange Multipliers and the Karush-Kuhn-Tucker Theorem for Mixed Constraints.- 7.3. Quadratic Programming.- Exercises.