Cantitate/Preț
Produs

The Schrödinger and Riccati Equations: Lecture Notes in Chemistry, cartea 70

Autor Serafin Fraga, Jose M. Garcia de la Vega, Eric S. Fraga
en Limba Engleză Paperback – 18 noi 1998
The linear Schrödinger equation is central to Quantum Chemistry. It is presented within the context of relativistic Quantum Mechanics and analysed both in time-dependent and time-independent forms. The Riccati equation is used to study the one-dimensional Schrödinger equation.
The authors develop the Schrödinger-Riccati equation as an approach to determine solutions of the time-independent, linear Schrödinger equation.
Citește tot Restrânge

Din seria Lecture Notes in Chemistry

Preț: 37392 lei

Nou

Puncte Express: 561

Preț estimativ în valută:
7157 7459$ 5958£

Carte tipărită la comandă

Livrare economică 04-18 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540651055
ISBN-10: 3540651055
Pagini: 240
Ilustrații: XIV, 218 p. 2 illus.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.34 kg
Ediția:Softcover reprint of the original 1st ed. 1999
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Chemistry

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1 Introduction.- The Linear Schrödinger Equation.- 2 Derivation of the Schrödinger Equation.- 3 The Schrödinger Equation in Position Space.- 4 The Schrödinger Equation In Momentum Space.- 5 The Local Schrödinger Equation.- 6 The Time-Dependent Schrödinger Equation.- The Non-Linear Schrödinger Equation.- 7 The Non-Linear Schrödinger Equation.- The Riccati Equation.- 8 The Riccati Equation and Its Solution.- 9 Quantum-Mechanical Applications of the Riccati Equation.- The Schrödinger-Riccati Equation.- 10 The Schrödinger-Riccati Equation.- 11 Numerical Experience with the Schrödinger-Riccati Equation.- 12 References and Bibliography.- Appendix. Matrix Notation.

Textul de pe ultima copertă

The linear Schrödinger equation is presented in the context of relativistic Quantum Mechanics. It is analysed in time-dependent and time-independent forms and its local and global properties are inspected. The authors develop the Schrödinger-Riccati equation as an approach to determine solutions of the time-independent, linear Schrödinger equation.