The Stability and Control of Discrete Processes: Applied Mathematical Sciences, cartea 62
Autor J.P. LaSalleen Limba Engleză Paperback – 5 noi 1986
Din seria Applied Mathematical Sciences
- 18% Preț: 431.09 lei
- 17% Preț: 435.89 lei
- 17% Preț: 437.01 lei
- 24% Preț: 906.74 lei
- 23% Preț: 659.01 lei
- Preț: 375.64 lei
- 18% Preț: 891.04 lei
- 18% Preț: 778.92 lei
- 18% Preț: 931.26 lei
- 15% Preț: 632.42 lei
- 24% Preț: 808.01 lei
- Preț: 382.64 lei
- Preț: 443.52 lei
- Preț: 186.35 lei
- Preț: 391.09 lei
- 18% Preț: 947.32 lei
- 15% Preț: 630.46 lei
- 15% Preț: 518.14 lei
- Preț: 404.85 lei
- Preț: 382.41 lei
- 18% Preț: 721.12 lei
- 18% Preț: 1382.41 lei
- 15% Preț: 696.82 lei
- Preț: 387.52 lei
- 18% Preț: 996.64 lei
- Preț: 395.05 lei
- 18% Preț: 1107.23 lei
- 18% Preț: 1111.87 lei
- 18% Preț: 1360.66 lei
- 18% Preț: 1106.74 lei
- 18% Preț: 1117.59 lei
- 15% Preț: 639.94 lei
Preț: 373.19 lei
Nou
Puncte Express: 560
Preț estimativ în valută:
71.54€ • 75.08$ • 58.100£
71.54€ • 75.08$ • 58.100£
Carte tipărită la comandă
Livrare economică 23 ianuarie-06 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387964119
ISBN-10: 0387964118
Pagini: 150
Ilustrații: VIII, 150 p.
Dimensiuni: 155 x 235 x 9 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
ISBN-10: 0387964118
Pagini: 150
Ilustrații: VIII, 150 p.
Dimensiuni: 155 x 235 x 9 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Introduction.- 2. Liapunov’s direct method.- 3. Linear systems x’ = Ax..- 4. An algorithm for computing An..- 5. A characterization of stable matrices. Computational criteria..- 6. Liapunov’s characterization of stable matrices. A Liapunov function for x’ = Ax..- 7. Stability by the linear approximation..- 8. The general solution of x’ = Ax. The Jordan Canonical Form..- 9. Higher order equations. The general solution of ?(z)y = 0..- 10. Companion matrices. The equivalence of x’ = Ax and ?(z)y = 0..- 11. Another algorithm for computing An..- 12. Nonhomogeneous linear systems x’ = Ax + f(n). Variation of parameters and undetermined coefficients..- 13. Forced oscillations..- 14. Systems of higher order equations P(z)y = 0. The equivalence of polynomial matrices..- 15. The control of linear systems. Controllability..- 16. Stabilization by linear feedback. Pole assignment..- 17. Minimum energy control. Minimal time-energy feedback control..- 18. Observability. Observers. State estimation. Stabilization by dynamic feedback..- References.