Cantitate/Preț
Produs

The Topos of Music I: Theory: Geometric Logic, Classification, Harmony, Counterpoint, Motives, Rhythm: Computational Music Science

Autor Guerino Mazzola
en Limba Engleză Paperback – 11 dec 2018
This is the first volume of the second edition of the now classic book “The Topos of Music”. The author explains the theory's conceptual framework of denotators and forms, the classification of local and global musical objects, the mathematical models of harmony and counterpoint, and topologies for rhythm and motives.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 74582 lei  38-44 zile
  Springer International Publishing – 11 dec 2018 74582 lei  38-44 zile
Hardback (1) 76925 lei  38-44 zile
  Springer International Publishing – 11 apr 2018 76925 lei  38-44 zile

Din seria Computational Music Science

Preț: 74582 lei

Preț vechi: 98133 lei
-24% Nou

Puncte Express: 1119

Preț estimativ în valută:
14275 14878$ 11883£

Carte tipărită la comandă

Livrare economică 31 decembrie 24 - 06 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030097172
ISBN-10: 303009717X
Pagini: 656
Ilustrații: XLIX, 656 p. 175 illus., 162 illus. in color.
Dimensiuni: 210 x 279 mm
Ediția:Softcover reprint of the original 2nd ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Computational Music Science

Locul publicării:Cham, Switzerland

Cuprins

Preface to the Second Edition.- Preface.- Part I Introduction and Orientation.- Part II Navigation on Concept Spaces.- Part III Local Theory.- Part IV Global Theory.- Part V Topologies for Rhythm and Motives.- Part VI Harmony.- Part VII Counterpoint. Part XXIV References and Index.

Textul de pe ultima copertă

This is the first volume of the second edition of the now classic book “The Topos of Music”. The author explains the theory's conceptual framework of denotators and forms, the classification of local and global musical objects, the mathematical models of harmony and counterpoint, and topologies for rhythm and motives.

Caracteristici

Describes a universal conceptual approach to the computational science of music Comprises detailed models of harmony, rhythm, motives, and counterpoint, together with classic examples from the compositions of Beethoven and Schumann Presents an indispensable basis for computer implementation of musical creativity and analysis of harmonic, motivic, contrapuntal, and rhythmical structures Offers a unique source to learn about classification theorems and lists of local and global musical structures