Cantitate/Preț
Produs

Theory of Hypergeometric Functions: Springer Monographs in Mathematics

Autor Kazuhiko Aomoto, Michitake Kita Apendix de Toshitake Kohno Traducere de Kenji Iohara
en Limba Engleză Paperback – 15 iul 2013
This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne’s rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff’s classical theory on analytic difference equations on the other.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 57637 lei  6-8 săpt.
  Springer – 15 iul 2013 57637 lei  6-8 săpt.
Hardback (1) 77232 lei  6-8 săpt.
  Springer – 13 mai 2011 77232 lei  6-8 săpt.

Din seria Springer Monographs in Mathematics

Preț: 57637 lei

Preț vechi: 67808 lei
-15% Nou

Puncte Express: 865

Preț estimativ în valută:
11030 11491$ 9171£

Carte tipărită la comandă

Livrare economică 10-24 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9784431540878
ISBN-10: 4431540873
Pagini: 336
Ilustrații: XVI, 320 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.48 kg
Ediția:2011
Editura: Springer
Colecția Springer
Seria Springer Monographs in Mathematics

Locul publicării:Tokyo, Japan

Public țintă

Professional/practitioner

Cuprins

1 Introduction: the Euler-Gauss Hypergeometric Function.- 2 Representation of Complex Integrals and Twisted de Rham Cohomologies.- 3 Hypergeometric functions over Grassmannians.- 4 Holonomic Difference Equations and Asymptotic Expansion References Index.

Caracteristici

Reader will understand clearly multidimensional hypergeometric function as a natural extension of the classical one from viewpoint of integrals A quick introduction to rational de Rham cohomology due to A.Grothendieck and P.Deligne and also to holonomic differential equations (or Gauss-Manin connection) and difference equations associated with hypergeometric functions Application of hypergeometric functions to several analytic or geometric problems Includes supplementary material: sn.pub/extras