Toeplitz Operators and Index Theory in Several Complex Variables: Operator Theory: Advances and Applications, cartea 81
Autor Harald Upmeieren Limba Engleză Paperback – 27 sep 2011
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 934.64 lei 6-8 săpt. | |
Birkhäuser Basel – 27 sep 2011 | 934.64 lei 6-8 săpt. | |
Hardback (1) | 940.66 lei 6-8 săpt. | |
Birkhäuser Basel – 26 ian 1995 | 940.66 lei 6-8 săpt. |
Din seria Operator Theory: Advances and Applications
- Preț: 311.96 lei
- 20% Preț: 574.08 lei
- 20% Preț: 574.08 lei
- 18% Preț: 942.07 lei
- Preț: 393.93 lei
- 15% Preț: 634.96 lei
- 18% Preț: 723.50 lei
- 15% Preț: 640.56 lei
- Preț: 376.76 lei
- 15% Preț: 631.77 lei
- 15% Preț: 632.73 lei
- 15% Preț: 639.10 lei
- 15% Preț: 633.06 lei
- 15% Preț: 649.70 lei
- Preț: 381.09 lei
- 15% Preț: 626.15 lei
- 18% Preț: 713.38 lei
- 15% Preț: 634.96 lei
- 15% Preț: 634.00 lei
- 18% Preț: 730.25 lei
- 15% Preț: 630.33 lei
- 15% Preț: 632.73 lei
- 18% Preț: 1104.74 lei
- 18% Preț: 1106.00 lei
- 15% Preț: 637.97 lei
- 18% Preț: 1101.67 lei
- Preț: 387.70 lei
- 15% Preț: 651.47 lei
- 15% Preț: 633.36 lei
- Preț: 384.86 lei
- 18% Preț: 921.04 lei
- 18% Preț: 941.48 lei
Preț: 934.64 lei
Preț vechi: 1139.80 lei
-18% Nou
Puncte Express: 1402
Preț estimativ în valută:
178.87€ • 185.80$ • 148.58£
178.87€ • 185.80$ • 148.58£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783034899604
ISBN-10: 3034899602
Pagini: 496
Ilustrații: XI, 483 p.
Dimensiuni: 155 x 235 x 26 mm
Greutate: 0.69 kg
Ediția:1996
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Operator Theory: Advances and Applications
Locul publicării:Basel, Switzerland
ISBN-10: 3034899602
Pagini: 496
Ilustrații: XI, 483 p.
Dimensiuni: 155 x 235 x 26 mm
Greutate: 0.69 kg
Ediția:1996
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Operator Theory: Advances and Applications
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
1. Multi-variable Complex Analysis and Domains of Holomorphy.- 1.0 Introduction.- 1.1 Holomorphic Functions in Several Complex Variables.- 1.2 Pseudoconvex Domains.- 1.3 Tubular Domains.- 1.4 Polycircular Domains.- 1.5 Symmetric Domains.- 1.6 K-circular Domains.- 1.7 S-bicircular Domains.- 2. Harmonic Analysis on Hilbert Spaces of Holomorphic Functions.- 2.0 Introduction.- 2.1 Bergman Spaces Over Pseudoconvex Domains.- 2.2 Hardy Spaces Over Strictly Pseudoconvex Domains.- 2.3 Hardy Spaces Over Tubular Domains.- 2.4 Bergman Spaces Over Tubular Domains.- 2.5 Hardy Spaces Over Polycircular Domains.- 2.6 Bergman Spaces Over Polycircular Domains.- 2.7 The Segal-Bargmann Space of a Hermitian Vector Space.- 2.8 Hardy Spaces Over Symmetric Domains.- 2.9 Bergman Spaces Over Symmetric Domains.- 2.10 Hardy Spaces Over K-circular Domains.- 2.11 Hardy Spaces Over S-bicircular Domains.- 3. Multiplier C*-Algebras and Their Representations.- 3.0 Introduction.- 3.1 Hardy Multipliers Over Tubular Domains.- 3.2 Bergman Multipliers Over Tubular Domains.- 3.3 Hardy Multipliers Over Polycircular Domains.- 3.4 Bergman Multipliers Over Polycircular Domains.- 3.5 Hardy Multipliers Over K-circular Domains.- 3.6 Hardy Multipliers Over Symmetric Domains.- 3.7 Hardy Multipliers Over S-bicircular Domains.- 4. Toeplitz Operators and Toeplitz C*-Algebras.- 4.0 Introduction.- 4.1 Bergman-Toeplitz Operators Over Bounded Domains.- 4.2 Hardy-Toeplitz Operators Over Strictly Pseudoconvex Domains.- 4.3 Groupoid C*-Algebras.- 4.4 Hardy-Toeplitz Operators Over Tubular Domains.- 4.5 Bergman-Toeplitz Operators Over Tubular Domains.- 4.6 Hardy-Toeplitz Operators Over Polycircular Domains.- 4.7 Bergman-Toeplitz Operators Over Polycircular Domains.- 4.8 Hopf C*-Algebras.- 4.9 Actions and Coactions on C*-Algebras.-4.10 Hardy-Toeplitz Operators Over K-circular Domains.- 4.11 Hardy-Toeplitz Operators Over Symmetric Domains.- 4.12 Bergman-Toeplitz Operators Over Symmetric Domains.- 5. Index Theory for Multivariable Toeplitz Operators.- 5.0 Introduction.- 5 .1 K-Theory for Topological Spaces.- 5.2 Index Theory for Strictly Pseudoconvex Domains.- 5.3 K-Theory for C*-Algebras.- 5.4 Index Theory for Symmetric Domains.- 5.5 Index Theory for Tubular Domains.- 5.6 Index Theory for Polycircular Domains.- References.- Index of Symbols and Notations.