Toeplitz Operators and Index Theory in Several Complex Variables: Operator Theory: Advances and Applications, cartea 81
Autor Harald Upmeieren Limba Engleză Paperback – 27 sep 2011
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 953.97 lei 6-8 săpt. | |
Birkhäuser Basel – 27 sep 2011 | 953.97 lei 6-8 săpt. | |
Hardback (1) | 960.13 lei 6-8 săpt. | |
Birkhäuser Basel – 26 ian 1995 | 960.13 lei 6-8 săpt. |
Din seria Operator Theory: Advances and Applications
- 18% Preț: 890.54 lei
- 20% Preț: 574.08 lei
- 18% Preț: 1127.60 lei
- 15% Preț: 643.34 lei
- 18% Preț: 961.55 lei
- Preț: 395.63 lei
- 15% Preț: 648.05 lei
- 18% Preț: 737.71 lei
- 15% Preț: 653.14 lei
- Preț: 384.48 lei
- 15% Preț: 644.82 lei
- 15% Preț: 645.79 lei
- Preț: 402.00 lei
- 15% Preț: 650.04 lei
- 15% Preț: 660.83 lei
- 15% Preț: 639.08 lei
- 18% Preț: 940.09 lei
- 15% Preț: 648.05 lei
- Preț: 388.90 lei
- 18% Preț: 728.11 lei
- 20% Preț: 574.08 lei
- 15% Preț: 645.79 lei
- 18% Preț: 1128.89 lei
- 15% Preț: 646.11 lei
- 15% Preț: 648.89 lei
- 18% Preț: 745.33 lei
- 18% Preț: 1124.47 lei
- 15% Preț: 647.08 lei
- 15% Preț: 662.62 lei
- Preț: 392.75 lei
- 18% Preț: 960.96 lei
- 15% Preț: 646.43 lei
- 18% Preț: 738.37 lei
Preț: 953.97 lei
Preț vechi: 1163.38 lei
-18% Nou
Puncte Express: 1431
Preț estimativ în valută:
182.59€ • 189.90$ • 153.01£
182.59€ • 189.90$ • 153.01£
Carte tipărită la comandă
Livrare economică 13-27 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783034899604
ISBN-10: 3034899602
Pagini: 496
Ilustrații: XI, 483 p.
Dimensiuni: 155 x 235 x 26 mm
Greutate: 0.69 kg
Ediția:1996
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Operator Theory: Advances and Applications
Locul publicării:Basel, Switzerland
ISBN-10: 3034899602
Pagini: 496
Ilustrații: XI, 483 p.
Dimensiuni: 155 x 235 x 26 mm
Greutate: 0.69 kg
Ediția:1996
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Operator Theory: Advances and Applications
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
1. Multi-variable Complex Analysis and Domains of Holomorphy.- 1.0 Introduction.- 1.1 Holomorphic Functions in Several Complex Variables.- 1.2 Pseudoconvex Domains.- 1.3 Tubular Domains.- 1.4 Polycircular Domains.- 1.5 Symmetric Domains.- 1.6 K-circular Domains.- 1.7 S-bicircular Domains.- 2. Harmonic Analysis on Hilbert Spaces of Holomorphic Functions.- 2.0 Introduction.- 2.1 Bergman Spaces Over Pseudoconvex Domains.- 2.2 Hardy Spaces Over Strictly Pseudoconvex Domains.- 2.3 Hardy Spaces Over Tubular Domains.- 2.4 Bergman Spaces Over Tubular Domains.- 2.5 Hardy Spaces Over Polycircular Domains.- 2.6 Bergman Spaces Over Polycircular Domains.- 2.7 The Segal-Bargmann Space of a Hermitian Vector Space.- 2.8 Hardy Spaces Over Symmetric Domains.- 2.9 Bergman Spaces Over Symmetric Domains.- 2.10 Hardy Spaces Over K-circular Domains.- 2.11 Hardy Spaces Over S-bicircular Domains.- 3. Multiplier C*-Algebras and Their Representations.- 3.0 Introduction.- 3.1 Hardy Multipliers Over Tubular Domains.- 3.2 Bergman Multipliers Over Tubular Domains.- 3.3 Hardy Multipliers Over Polycircular Domains.- 3.4 Bergman Multipliers Over Polycircular Domains.- 3.5 Hardy Multipliers Over K-circular Domains.- 3.6 Hardy Multipliers Over Symmetric Domains.- 3.7 Hardy Multipliers Over S-bicircular Domains.- 4. Toeplitz Operators and Toeplitz C*-Algebras.- 4.0 Introduction.- 4.1 Bergman-Toeplitz Operators Over Bounded Domains.- 4.2 Hardy-Toeplitz Operators Over Strictly Pseudoconvex Domains.- 4.3 Groupoid C*-Algebras.- 4.4 Hardy-Toeplitz Operators Over Tubular Domains.- 4.5 Bergman-Toeplitz Operators Over Tubular Domains.- 4.6 Hardy-Toeplitz Operators Over Polycircular Domains.- 4.7 Bergman-Toeplitz Operators Over Polycircular Domains.- 4.8 Hopf C*-Algebras.- 4.9 Actions and Coactions on C*-Algebras.-4.10 Hardy-Toeplitz Operators Over K-circular Domains.- 4.11 Hardy-Toeplitz Operators Over Symmetric Domains.- 4.12 Bergman-Toeplitz Operators Over Symmetric Domains.- 5. Index Theory for Multivariable Toeplitz Operators.- 5.0 Introduction.- 5 .1 K-Theory for Topological Spaces.- 5.2 Index Theory for Strictly Pseudoconvex Domains.- 5.3 K-Theory for C*-Algebras.- 5.4 Index Theory for Symmetric Domains.- 5.5 Index Theory for Tubular Domains.- 5.6 Index Theory for Polycircular Domains.- References.- Index of Symbols and Notations.