Topological Function Spaces: Mathematics and its Applications, cartea 78
Autor A.V. Arkhangel'skiien Limba Engleză Hardback – 30 noi 1991
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 380.91 lei 43-57 zile | |
SPRINGER NETHERLANDS – 21 oct 2012 | 380.91 lei 43-57 zile | |
Hardback (1) | 388.91 lei 43-57 zile | |
SPRINGER NETHERLANDS – 30 noi 1991 | 388.91 lei 43-57 zile |
Din seria Mathematics and its Applications
- Preț: 479.75 lei
- Preț: 367.83 lei
- Preț: 381.89 lei
- Preț: 431.98 lei
- 23% Preț: 321.52 lei
- 20% Preț: 368.53 lei
- Preț: 429.32 lei
- 22% Preț: 321.53 lei
- Preț: 432.19 lei
- 15% Preț: 455.76 lei
- Preț: 424.58 lei
- 12% Preț: 351.91 lei
- 22% Preț: 333.11 lei
- Preț: 356.63 lei
- 18% Preț: 1117.13 lei
- Preț: 390.09 lei
- 15% Preț: 646.86 lei
- 15% Preț: 638.10 lei
- 15% Preț: 642.83 lei
- 15% Preț: 642.83 lei
- Preț: 386.63 lei
- Preț: 391.23 lei
- 15% Preț: 647.37 lei
- 20% Preț: 646.78 lei
- 15% Preț: 645.40 lei
- Preț: 379.55 lei
- Preț: 390.09 lei
- 15% Preț: 652.56 lei
- 15% Preț: 653.52 lei
- Preț: 391.39 lei
Preț: 388.91 lei
Nou
Puncte Express: 583
Preț estimativ în valută:
74.48€ • 76.74$ • 62.39£
74.48€ • 76.74$ • 62.39£
Carte tipărită la comandă
Livrare economică 24 februarie-10 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792315315
ISBN-10: 0792315316
Pagini: 205
Ilustrații: IX, 205 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.5 kg
Ediția:1992
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 0792315316
Pagini: 205
Ilustrații: IX, 205 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.5 kg
Ediția:1992
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
0. General information on Cp(X) as an object of topological algebra. Introductory material.- 1. General questions about Cp(X).- 2. Certain notions from general topology. Terminology and notation.- 3. Simplest properties of the spaces Cp(X, Y).- 4. Restriction map and duality map.- 5. Canonical evaluation map of a space X in the space CpCp(X).- 6. Nagata’s theorem and Okunev’s theorem.- I. Topological properties of Cp(X) and simplest duality theo-rems.- 1. Elementary duality theorems.- 2. When is the space Cp(X) u-compact?.- 3. “tech completeness and the Baire property in spaces Cp(X).- 4. The Lindelöf number of a space Cp(X),and Asanov’s theorem.- 5. Normality, collectionwise normality, paracompactness, and the extent of Cp(X).- 6. The behavior of normality under the restriction map between function spaces.- II. Duality between invariants of Lindelöf number and tightness type.- 1. Lindelöf number and tightness: the Arkhangel’skii—Pytkeev theorem.- 2. Hurewicz spaces and fan tightness.- 3. Fréchet—Urysohn property, sequentiality, and the k-property of Cp(X).- 4. Hewitt—Nachbin spaces and functional tightness.- 5. Hereditary separability, spread, and hereditary Lindelöf number.- 6. Monolithic and stable spaces in Cp-duality.- 7. Strong monolithicity and simplicity.- 8. Discreteness is a supertopological property.- III. Topological properties of function spaces over arbitrary compacta.- 1. Tightness type properties of spaces Cp(X), where X is a compactum, and embedding in such Cp(X).- 2. Okunev’s theorem on the preservation of Q-compactness under t-equivalence.- 3. Compact sets of functions in Cp(X). Their simplest topological properties.- 4. Grothendieck’s theorem and its generalizations.- 5. Namioka’s theorem, and Pták’s approach.- 6.Baturov’s theorem on the Lindelöf number of function spaces over compacta.- IV. Lindelöf number type properties for function spaces over compacta similar to Eberlein compacta, and properties of such compacta.- 1. Separating families of functions, and functionally perfect spaces.- 2. Separating families of functions on compacta and the Lindelöf number of Cp(X).- 3. Characterization of Corson compacta by properties of the space Cp(X).- 4. Resoluble compacta, and condensations of Cp(X) into a ?*-product of real lines. Two characterizations of Eberlein compacta.- 5. The Preiss—Simon theorem.- 6. Adequate families of sets: a method for constructing Corson compacta.- 7. The Lindelöf number of the space Cp(X),and scattered compacta.- 8. The Lindelöf number of Cp(X) and Martin’s axiom.- 9. Lindelöf ?-spaces, and properties of the spaces Cp,n(X).- 10. The Lindelöf number of a function space over a linearly ordered compactum.- 11. The cardinality of Lindelöf subspaces of function spaces over compacta.