Cantitate/Preț
Produs

Topology of Singular Spaces and Constructible Sheaves: Monografie Matematyczne, cartea 63

Autor Jörg Schürmann
en Limba Engleză Hardback – 24 oct 2003
Assuming that the reader is familiar with sheaf theory, the book gives a self-contained introduction to the theory of constructible sheaves related to many kinds of singular spaces, such as cell complexes, triangulated spaces, semialgebraic and subanalytic sets, complex algebraic or analytic sets, stratified spaces, and quotient spaces. The relation to the underlying geometrical ideas are worked out in detail, together with many applications to the topology of such spaces. All chapters have their own detailed introduction, containing the main results and definitions, illustrated in simple terms by a number of examples. The technical details of the proof are postponed to later sections, since these are not needed for the applications.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 63563 lei  6-8 săpt.
  Birkhäuser Basel – 30 oct 2012 63563 lei  6-8 săpt.
Hardback (1) 65357 lei  6-8 săpt.
  Birkhäuser Basel – 24 oct 2003 65357 lei  6-8 săpt.

Din seria Monografie Matematyczne

Preț: 65357 lei

Preț vechi: 76890 lei
-15% Nou

Puncte Express: 980

Preț estimativ în valută:
12510 13117$ 10336£

Carte tipărită la comandă

Livrare economică 30 ianuarie-13 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783764321895
ISBN-10: 376432189X
Pagini: 468
Ilustrații: X, 454 p.
Dimensiuni: 155 x 235 x 31 mm
Greutate: 1.16 kg
Ediția:2003
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Monografie Matematyczne

Locul publicării:Basel, Switzerland

Public țintă

Research

Cuprins

1 Thom-Sebastiani Theorem for constructible sheaves.- 1.1 Milnor fibration.- 1.2 Thom-Sebastiani Theorem.- 1.3 The Thom-Sebastiani Isomorphism in the derived category.- 1.4 Appendix: Künneth formula.- 2 Constructible sheaves in geometric categories.- 2.1 Geometric categories.- 2.2 Constructible sheaves.- 2.3 Constructible functions.- 3 Localization results for equivariant constructible sheaves.- 3.1 Equivariant sheaves.- 3.2 Localization results for additive functions.- 3.3 Localization results for Grothendieck groups and trace formulae.- 3.4 Equivariant cohomology.- 4 Stratification theory and constructible sheaves.- 4.1 Stratification theory.- 4.2 Constructible sheaves on stratified spaces.- 4.3 Base change properties.- 5 Morse theory for constructible sheaves.- 5.1 Stratified Morse theory, part I.- 5.2 Characteristic cycles and index formulae.- 5.3 Stratified Morse theory, part II.- 5.4 Vanishing cycles.- 6 Vanishing theorems for constructible sheaves.- Introduction: Results and examples.- 6.1 Proof of the results.

Caracteristici

A new cohomological approach to constructible sheaves on stratified spaces, which doesn't use the first isotopy lemma of Thom A self-contained approach to Morse theory for constructible sheaves, including a geometric introduction to the theory of characteristic cycles Very general vanishing and Lefschetz theorems of Artin-Grothendieck type in the complex algebraic and analytic context, which apply in particular to intersection (co)homology and perverse sheaves