Topology of Singular Spaces and Constructible Sheaves: Monografie Matematyczne, cartea 63
Autor Jörg Schürmannen Limba Engleză Hardback – 24 oct 2003
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 624.21 lei 43-57 zile | |
Birkhäuser Basel – 30 oct 2012 | 624.21 lei 43-57 zile | |
Hardback (1) | 641.83 lei 43-57 zile | |
Birkhäuser Basel – 24 oct 2003 | 641.83 lei 43-57 zile |
Preț: 641.83 lei
Preț vechi: 755.10 lei
-15% Nou
Puncte Express: 963
Preț estimativ în valută:
122.83€ • 129.90$ • 102.46£
122.83€ • 129.90$ • 102.46£
Carte tipărită la comandă
Livrare economică 30 decembrie 24 - 13 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783764321895
ISBN-10: 376432189X
Pagini: 468
Ilustrații: X, 454 p.
Dimensiuni: 155 x 235 x 31 mm
Greutate: 1.16 kg
Ediția:2003
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Monografie Matematyczne
Locul publicării:Basel, Switzerland
ISBN-10: 376432189X
Pagini: 468
Ilustrații: X, 454 p.
Dimensiuni: 155 x 235 x 31 mm
Greutate: 1.16 kg
Ediția:2003
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Monografie Matematyczne
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
1 Thom-Sebastiani Theorem for constructible sheaves.- 1.1 Milnor fibration.- 1.2 Thom-Sebastiani Theorem.- 1.3 The Thom-Sebastiani Isomorphism in the derived category.- 1.4 Appendix: Künneth formula.- 2 Constructible sheaves in geometric categories.- 2.1 Geometric categories.- 2.2 Constructible sheaves.- 2.3 Constructible functions.- 3 Localization results for equivariant constructible sheaves.- 3.1 Equivariant sheaves.- 3.2 Localization results for additive functions.- 3.3 Localization results for Grothendieck groups and trace formulae.- 3.4 Equivariant cohomology.- 4 Stratification theory and constructible sheaves.- 4.1 Stratification theory.- 4.2 Constructible sheaves on stratified spaces.- 4.3 Base change properties.- 5 Morse theory for constructible sheaves.- 5.1 Stratified Morse theory, part I.- 5.2 Characteristic cycles and index formulae.- 5.3 Stratified Morse theory, part II.- 5.4 Vanishing cycles.- 6 Vanishing theorems for constructible sheaves.- Introduction: Results and examples.- 6.1 Proof of the results.
Caracteristici
A new cohomological approach to constructible sheaves on stratified spaces, which doesn't use the first isotopy lemma of Thom A self-contained approach to Morse theory for constructible sheaves, including a geometric introduction to the theory of characteristic cycles Very general vanishing and Lefschetz theorems of Artin-Grothendieck type in the complex algebraic and analytic context, which apply in particular to intersection (co)homology and perverse sheaves