Cantitate/Preț
Produs

Towards THz Chipless High-Q Cooperative Radar Targets for Identification, Sensing, and Ranging: Springer Theses

Autor Alejandro Jiménez-Sáez
en Limba Engleză Hardback – 22 sep 2022
This work systematically investigates the use of high-quality (high-Q) resonators as coding particles of chipless cooperative radar targets to overcome clutter. Due to their high-Q, the backscattered signature can outlast clutter and permit reliable readouts in dynamic environments as well as its integration in other types of cooperative radar targets for joint identification, sensing, and ranging capabilities.
This is first demonstrated with temperature and pressure sensors in the microwave frequency range, which include the characterization of a novel temperature sensor for machine tool monitoring up to 400 °C, as well as inside the machine. Afterwards, the thesis proposes and demonstrates the use of metallic as well as dielectric Electromagnetic BandGap (EBG) structures to enable the realization and to enhance the capabilities at mm-Wave and THz frequencies compared to microwave frequencies with compact monolithic multi-resonator cooperative radar targets. Furthermore, thiswork studies the integration of resonators as coding particles inside larger retroreflective configurations such as Luneburg lenses to achieve long-range and high accuracy for localization and, at the same time, frequency coding robust against clutter for identification. Finally, the successful readout of these cooperative radar targets is demonstrated in cluttered dynamic environments, as well as with readers based on Frequency-Modulated Continuous-Wave (FMCW) radars.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 62918 lei  6-8 săpt.
  Springer International Publishing – 22 sep 2023 62918 lei  6-8 săpt.
Hardback (1) 63534 lei  3-5 săpt.
  Springer International Publishing – 22 sep 2022 63534 lei  3-5 săpt.

Din seria Springer Theses

Preț: 63534 lei

Preț vechi: 74746 lei
-15% Nou

Puncte Express: 953

Preț estimativ în valută:
12167 12416$ 10237£

Carte disponibilă

Livrare economică 05-19 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031049750
ISBN-10: 3031049756
Pagini: 144
Ilustrații: XVI, 144 p. 89 illus., 85 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.41 kg
Ediția:1st ed. 2022
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses

Locul publicării:Cham, Switzerland

Cuprins

Introduction.- High-Q Resonators for Chipless RFID and Sensing.- Wireless Sensing with Single Air-cladded High-Q Resonators.- Electromagnetic BandGap (EBG) high-Q Resonator Concepts.- High-RCS Wide-Angle Retroreflective Tags Towards THz 91.

Notă biografică

Alejandro Jiménez-Sáez received the double master’s degree (Hons.) in telecommunications engineering from the Polytechnic University of Valencia, Spain, and in electrical engineering from the Technische Universität Darmstadt, Germany, in 2017. He received the Dr.-Ing. degree (summa cum laude) in electrical engineering from the TU Darmstadt in 2021, and the award to the best dissertation in Elektrotechnik und Informationstechnik at TU Darmstadt in 2021. He currently leads the Smart RF Systems based on Artificial and Functional Materials research group at the institute of microwave engineering and photonics, TU Darmstadt. His current research interests include chipless RFID, high-Q resonators, electromagnetic bandgap structures, liquid crystals, and reconfigurable intelligent surfaces at sub-mm and mm-wave frequencies.

Textul de pe ultima copertă

This work systematically investigates the use of high-quality (high-Q) resonators as coding particles of chipless cooperative radar targets to overcome clutter. Due to their high-Q, the backscattered signature can outlast clutter and permit reliable readouts in dynamic environments as well as its integration in other types of cooperative radar targets for joint identification, sensing, and ranging capabilities. This is first demonstrated with temperature and pressure sensors in the microwave frequency range, which include the characterization of a novel temperature sensor for machine tool monitoring up to 400 °C, as well as inside the machine. Afterwards, the thesis proposes and demonstrates the use of metallic as well as dielectric Electromagnetic BandGap (EBG) structures to enable the realization and to enhance the capabilities at mm-Wave and THz frequencies compared to microwave frequencies with compact monolithic multi-resonator cooperative radar targets. Furthermore, this work studies the integration of resonators as coding particles inside larger retroreflective configurations such as Luneburg lenses to achieve long-range and high accuracy for localization and, at the same time, frequency coding robust against clutter for identification. Finally, the successful readout of these cooperative radar targets is demonstrated in cluttered dynamic environments, as well as with readers based on Frequency-Modulated Continuous-Wave (FMCW) radars.

Caracteristici

Nominated as an Outstanding PhD Thesis by the Technical University of Darmstadt, Gemany Explains the use of high-Q resonators for realizing chipless cooperative radar targets robust against clutter Discusses the advantages and disadvantages of different topologies depending on the application