Traffic Congestion Control by PDE Backstepping: Systems & Control: Foundations & Applications
Autor Huan Yu, Miroslav Krsticen Limba Engleză Hardback – 18 dec 2022
This monograph explores the design of controllers that suppress oscillations and instabilities in congested traffic flow using PDE backstepping methods. The first part of the text is concerned with basic backstepping control of freeway traffic using the Aw-Rascle-Zhang (ARZ) second-order PDE model. It begins by illustrating a basic control problem – suppressing traffic with stop-and-go oscillations downstream of ramp metering – before turning to the more challenging case for traffic upstream of ramp metering. The authors demonstrate how to design state observers for the purpose of stabilization using output-feedback control. Experimental traffic data are then used to calibrate the ARZ model and validate the boundary observer design. Because large uncertainties may arise in traffic models, adaptive control and reinforcement learning methods are also explored in detail.
Part II then extends the conventional ARZ model utilized until this point in orderto address more complex traffic conditions: multi-lane traffic, multi-class traffic, networks of freeway segments, and driver use of routing apps. The final chapters demonstrate the use of the Lighthill-Whitham-Richards (LWR) first-order PDE model to regulate congestion in traffic flows and to optimize flow through a bottleneck. In order to make the text self-contained, an introduction to the PDE backstepping method for systems of coupled first-order hyperbolic PDEs is included.
Traffic Congestion Control by PDE Backstepping is ideal for control theorists working on control of systems modeled by PDEs and for traffic engineers and applied scientists working on unsteady traffic flows. It will also be a valuable resource for researchers interested in boundary control of coupled systems of first-order hyperbolic PDEs.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 859.98 lei 6-8 săpt. | |
Springer International Publishing – 18 dec 2023 | 859.98 lei 6-8 săpt. | |
Hardback (1) | 865.90 lei 6-8 săpt. | |
Springer International Publishing – 18 dec 2022 | 865.90 lei 6-8 săpt. |
Din seria Systems & Control: Foundations & Applications
- 18% Preț: 1050.34 lei
- 17% Preț: 490.56 lei
- 15% Preț: 630.18 lei
- 15% Preț: 629.71 lei
- 15% Preț: 617.59 lei
- Preț: 389.30 lei
- Preț: 385.07 lei
- Preț: 379.67 lei
- 15% Preț: 616.17 lei
- 15% Preț: 611.75 lei
- 15% Preț: 621.68 lei
- 18% Preț: 760.38 lei
- Preț: 368.00 lei
- Preț: 371.88 lei
- 18% Preț: 910.39 lei
- 18% Preț: 1342.98 lei
- 18% Preț: 924.68 lei
- 18% Preț: 931.50 lei
- Preț: 373.76 lei
- 15% Preț: 621.05 lei
- Preț: 388.93 lei
- 18% Preț: 928.46 lei
- 15% Preț: 625.30 lei
- 18% Preț: 938.04 lei
- Preț: 371.51 lei
- Preț: 378.74 lei
- 15% Preț: 618.38 lei
- Preț: 376.16 lei
- Preț: 374.13 lei
- 15% Preț: 630.67 lei
- 20% Preț: 965.59 lei
- 15% Preț: 624.36 lei
- 15% Preț: 621.05 lei
- Preț: 371.51 lei
- 18% Preț: 916.79 lei
- Preț: 381.51 lei
- 15% Preț: 618.38 lei
- 15% Preț: 625.61 lei
Preț: 865.90 lei
Preț vechi: 1055.99 lei
-18% Nou
Puncte Express: 1299
Preț estimativ în valută:
165.72€ • 174.83$ • 138.11£
165.72€ • 174.83$ • 138.11£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031193453
ISBN-10: 3031193458
Pagini: 356
Ilustrații: XVII, 356 p.
Dimensiuni: 155 x 235 mm
Greutate: 0.7 kg
Ediția:1st ed. 2022
Editura: Springer International Publishing
Colecția Birkhäuser
Seria Systems & Control: Foundations & Applications
Locul publicării:Cham, Switzerland
ISBN-10: 3031193458
Pagini: 356
Ilustrații: XVII, 356 p.
Dimensiuni: 155 x 235 mm
Greutate: 0.7 kg
Ediția:1st ed. 2022
Editura: Springer International Publishing
Colecția Birkhäuser
Seria Systems & Control: Foundations & Applications
Locul publicării:Cham, Switzerland
Cuprins
Introduction.- Backstepping for Coupled Hyperbolic PDEs.- Part I: Basic Backstepping Control of Freeway Traffic.- Stabilization of ARZ Model with Known Parameters and Fundamental Diagram.- Observer Validation on Freeway Data.- Adaptive Control of ARZ Traffic Model.- Event-Triggered Control of ARZ Model.- Comparison of Backstepping with Reinforcement Learning.- Part II: Advanced Backstepping for Traffic Flows.- Two-Lane Traffic Control.- Two-Class Traffic Control.- Control of Two-Cascaded Freeway Segments.- Estimation of Freeway Diverge Flows.- Control under Routing-Induced Instability.- Bilateral Regulation of Moving Shock Position.- Extremum Seeking of Downstream Bottleneck.
Recenzii
“The book is well-organized, with excellent information, great formulas, stunning figures, and references to over 320 papers. The presentation is superb and simple to understand. It will benefit students, researchers, professors, and the general public.” (P. Senthil Kumar, zbMATH 1519.90001, 2023)
Notă biografică
Huan Yu is an Assistant Professor in the Thrust of Intelligent Transportation at the Hong Kong University of Science and Technology (Guangzhou), and a joint Assistant Professor in the Department of Civil and Environmental Engineering at the Hong Kong University of Science and Technology. She received her Ph.D. degree from University of California, San Diego. She was a visiting scholar at University of California, Berkeley and Massachusetts Institute of Technology.
Textul de pe ultima copertă
This monograph explores the design of controllers that suppress oscillations and instabilities in congested traffic flow using PDE backstepping methods. The first part of the text is concerned with basic backstepping control of freeway traffic using the Aw-Rascle-Zhang (ARZ) second-order PDE model. It begins by illustrating a basic control problem – suppressing traffic with stop-and-go oscillations downstream of ramp metering – before turning to the more challenging case for traffic upstream of ramp metering. The authors demonstrate how to design state observers for the purpose of stabilization using output-feedback control. Experimental traffic data are then used to calibrate the ARZ model and validate the boundary observer design. Because large uncertainties may arise in traffic models, adaptive control and reinforcement learning methods are also explored in detail.
Part II then extends the conventional ARZ model utilized until this point in orderto address more complex traffic conditions: multi-lane traffic, multi-class traffic, networks of freeway segments, and driver use of routing apps. The final chapters demonstrate the use of the Lighthill-Whitham-Richards (LWR) first-order PDE model to regulate congestion in traffic flows and to optimize flow through a bottleneck. In order to make the text self-contained, an introduction to the PDE backstepping method for systems of coupled first-order hyperbolic PDEs is included.
Traffic Congestion Control by PDE Backstepping is ideal for control theorists working on control of systems modeled by PDEs and for traffic engineers and applied scientists working on unsteady traffic flows. It will also be a valuable resource for researchers interested in boundary control of coupled systems of first-order hyperbolic PDEs.
Caracteristici
Studies stabilization and state estimation of stop-and-go oscillations for macroscopically modeled traffic flows Presents many extensions beyond the conventional Aw-Rascle-Zhang model of traffic flow Demonstrates applications for the widely popular method of PDE backstepping control