Cantitate/Preț
Produs

Transactions on Rough Sets I: Lecture Notes in Computer Science, cartea 3100

Editat de James F. Peters Andrzej Skowron Editat de Jerzy W. Grzymala-Busse, Bozena Kostek, Roman W. Swiniarski, Marcin S. Szczuka
en Limba Engleză Paperback – 5 iul 2004

Din seria Lecture Notes in Computer Science

Preț: 32576 lei

Preț vechi: 40720 lei
-20% Nou

Puncte Express: 489

Preț estimativ în valută:
6235 6577$ 5196£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540223740
ISBN-10: 3540223746
Pagini: 420
Ilustrații: X, 406 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.59 kg
Ediția:2004
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Transactions on Rough Sets

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Rough Sets – Introduction.- Some Issues on Rough Sets.- Rough Sets – Theory.- Learning Rules from Very Large Databases Using Rough Multisets.- Data with Missing Attribute Values: Generalization of Indiscernibility Relation and Rule Induction.- Generalizations of Rough Sets and Rule Extraction.- Towards Scalable Algorithms for Discovering Rough Set Reducts.- Variable Precision Fuzzy Rough Sets.- Greedy Algorithm of Decision Tree Construction for Real Data Tables.- Consistency Measures for Conflict Profiles.- Layered Learning for Concept Synthesis.- Basic Algorithms and Tools for Rough Non-deterministic Information Analysis.- A Partition Model of Granular Computing.- Rough Sets – Applications.- Musical Phrase Representation and Recognition by Means of Neural Networks and Rough Sets.- Processing of Musical Metadata Employing Pawlak’s Flow Graphs.- Data Decomposition and Decision Rule Joining for Classification of Data with Missing Values.- Rough Sets and Relational Learning.- Approximation Space for Software Models.- Application of Rough Sets to Environmental Engineering Models.- Rough Set Theory and Decision Rules in Data Analysis of Breast Cancer Patients.- Independent Component Analysis, Principal Component Analysis and Rough Sets in Face Recognition.

Caracteristici

Includes supplementary material: sn.pub/extras