Transfer in Reinforcement Learning Domains: Studies in Computational Intelligence, cartea 216
Autor Matthew Tayloren Limba Engleză Paperback – 28 oct 2010
The key contributions of this book are:
- Definition of the transfer problem in RL domains
- Background on RL, sufficient to allow a wide audience to understand discussed transfer concepts
- Taxonomy for transfer methods in RL
- Survey of existing approaches
- In-depth presentation of selected transfer methods
- Discussion of key open questions
Peter Stone, Associate Professor of Computer Science
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 629.83 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 28 oct 2010 | 629.83 lei 6-8 săpt. | |
Hardback (1) | 635.96 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 5 iun 2009 | 635.96 lei 6-8 săpt. |
Din seria Studies in Computational Intelligence
- 50% Preț: 264.48 lei
- 70% Preț: 235.75 lei
- 20% Preț: 1134.78 lei
- 20% Preț: 966.66 lei
- 20% Preț: 1423.29 lei
- 20% Preț: 168.78 lei
- 18% Preț: 1089.74 lei
- 20% Preț: 565.38 lei
- 20% Preț: 636.14 lei
- 20% Preț: 1026.49 lei
- 20% Preț: 1546.90 lei
- 20% Preț: 630.47 lei
- 20% Preț: 644.20 lei
- 20% Preț: 973.14 lei
- 20% Preț: 970.73 lei
- 20% Preț: 969.90 lei
- 20% Preț: 1142.04 lei
- 20% Preț: 1415.20 lei
- 20% Preț: 1020.82 lei
- 20% Preț: 1026.49 lei
- 20% Preț: 1024.85 lei
- 18% Preț: 2449.69 lei
- 20% Preț: 969.09 lei
- 20% Preț: 1142.04 lei
- 20% Preț: 1140.44 lei
- 20% Preț: 1021.64 lei
- 20% Preț: 1430.55 lei
- 18% Preț: 1375.05 lei
- 18% Preț: 1102.11 lei
- 20% Preț: 1018.40 lei
- 20% Preț: 987.68 lei
- 20% Preț: 1024.07 lei
- 20% Preț: 1249.53 lei
- 20% Preț: 1019.22 lei
- 20% Preț: 968.30 lei
- 20% Preț: 1146.08 lei
- 20% Preț: 1138.80 lei
- 20% Preț: 1037.78 lei
- 20% Preț: 1140.44 lei
- 20% Preț: 1142.87 lei
- 20% Preț: 1429.76 lei
- 18% Preț: 985.35 lei
- 20% Preț: 977.17 lei
- 20% Preț: 1034.54 lei
- 20% Preț: 1258.40 lei
- 20% Preț: 973.92 lei
- 20% Preț: 1027.45 lei
- 20% Preț: 924.65 lei
- 20% Preț: 1149.31 lei
- 20% Preț: 1428.13 lei
Preț: 629.83 lei
Preț vechi: 787.29 lei
-20% Nou
Puncte Express: 945
Preț estimativ în valută:
120.55€ • 126.47$ • 100.00£
120.55€ • 126.47$ • 100.00£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642101861
ISBN-10: 3642101860
Pagini: 244
Ilustrații: XII, 230 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.35 kg
Ediția:Softcover reprint of hardcover 1st ed. 2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642101860
Pagini: 244
Ilustrații: XII, 230 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.35 kg
Ediția:Softcover reprint of hardcover 1st ed. 2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Reinforcement Learning Background.- Related Work.- Empirical Domains.- Value Function Transfer via Inter-Task Mappings.- Extending Transfer via Inter-Task Mappings.- Transfer between Different Reinforcement Learning Methods.- Learning Inter-Task Mappings.- Conclusion and Future Work.
Textul de pe ultima copertă
In reinforcement learning (RL) problems, learning agents sequentially execute actions with the goal of maximizing a reward signal. The RL framework has gained popularity with the development of algorithms capable of mastering increasingly complex problems, but learning difficult tasks is often slow or infeasible when RL agents begin with no prior knowledge. The key insight behind "transfer learning" is that generalization may occur not only within tasks, but also across tasks. While transfer has been studied in the psychological literature for many years, the RL community has only recently begun to investigate the benefits of transferring knowledge. This book provides an introduction to the RL transfer problem and discusses methods which demonstrate the promise of this exciting area of research.
The key contributions of this book are:
Peter Stone, Associate Professor of Computer Science
The key contributions of this book are:
- Definition of the transfer problem in RL domains
- Background on RL, sufficient to allow a wide audience to understand discussed transfer concepts
- Taxonomy for transfer methods in RL
- Survey of existing approaches
- In-depth presentation of selected transfer methods
- Discussion of key open questions
Peter Stone, Associate Professor of Computer Science
Caracteristici
Introductory book to the new concept of transfer learning Recent research in transfer learning which is a current important topic in the field of Computational Intelligence