Cantitate/Preț
Produs

Unsicherheit, Unschärfe und rationales Entscheiden: Die Anwendung von Fuzzy-Methoden in der Entscheidungstheorie: Wirtschaftswissenschaftliche Beiträge, cartea 179

Autor Notburga Ott
de Limba Germană Paperback – 6 noi 2000
Entscheidungen unter Unsicherheit können mit dem üblichen Erwartungsnutzenkonzept häufig nicht angemessen modelliert werden, da die zugrunde liegenden Informationen den wahrscheinlichkeitstheoretischen Anforderungen nicht genügen. Ansätze der "beschränkten Rationalität" erscheinen dagegen oft willkürlich, da die Kriterien ihrer Anwendbarkeit fehlen. Die Modellierung von Unsicherheit mit Fuzzy-Mengen, die hier in einer maßtheoretischen Interpretation verwendet werden, erlaubt eine Verallgemeinerung der Rationalitätsbedingungen, die viele dieser Ansätze als Spezialfälle enthält. Eine Anwendung bei Social Choice Problemen zeigt das Potential des Ansatzes zur Erklärung und Verbesserung der Verfahren kollektiver Entscheidungen.
Citește tot Restrânge

Din seria Wirtschaftswissenschaftliche Beiträge

Preț: 48092 lei

Nou

Puncte Express: 721

Preț estimativ în valută:
9209 9489$ 7728£

Carte tipărită la comandă

Livrare economică 22 februarie-08 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783790813371
ISBN-10: 3790813370
Pagini: 240
Ilustrații: VI, 232 S. 9 Abb.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.34 kg
Ediția:2001
Editura: Physica-Verlag HD
Colecția Physica
Seria Wirtschaftswissenschaftliche Beiträge

Locul publicării:Heidelberg, Germany

Public țintă

Research

Cuprins

1 Einleitung.- I: Grundlagen der Fuzzy-Mathematik.- 2 Charakterisierung der Fuzzy-Methode.- 3 Fuzzy-Mengen-Theorie.- 4 Fuzzy-Maßtheorie.- 5 Zur Synthese von Fuzzy-Mail-und Fuzzy-Mengen-Theorie.- 6 Fuzzy-Relationen.- II: Die Anwendung des Fuzzy-Ansatzes in der Entscheidungstheorie.- 7 Entscheidungen bei Unschärfe.- 8 Wahlhandlungstheorie im Fuzzy-Kontert.- 9 Die Anwendung von Fuzzy-Ansätzen bei Social Choice Problemen.- 10 Zusammenfassung und Ausblick.- 11 Anhang.- 11.1 Notation.- 11.2 Maßtheoretische Defmitionen.- 11.3 Die Frage nach subjektiver Einkommensbewertung imsozio-ökonomischen Panel.- 11.4 Beweis des Satzes: Archimedische Normen mit Nullteller sind nilpotent.- 11.5 Archimedische t-Normen mit Nullteiler und konjugierte Funktionen.- 11.6 Bedingungen für die gleichzeitige t-Norm-und t-Conorm-Zerlegbarkeitvon Fuzzy-Maßen.- 11.6.1 Nicht gleichzeitig t-Norm-und t-Conrom-zerlegbare Fuzzy-Maße.- 11.6.2 Gleichzeitig t-Norm-und t-Conrom-zerlegbare Fuzzy-Maßev.- 11.7 Strikte Präferenzrelation und Indifferenzrelation mit unterschiedlichenVernüpfungsoperatoren anhand des Beispiels.- 11.8 Fuzzy-Indifferenz-und strikte Fuzzy-Präferenzrelation.- 11.8.1 Ausgangspunkt: strikte Fuzzy-Präferenz.- 11.8.2 Ausgangspunkt: Fuzzy-Indifferenz.- 11.9 Programm zur Berechnung der „nächsten“ scharfen Präferenzordnung.- 11.10 Berechnung des unteren Choquet-Integral für alle drei Individuen.- 12 Literatur.

Textul de pe ultima copertă

Entscheidungen unter Unsicherheit können mit dem üblichen Erwartungsnutzenkonzept häufig nicht angemessen modelliert werden, da die zugrunde liegenden Informationen den wahrscheinlichkeitstheoretischen Anforderungen nicht genügen. Ansätze der "beschränkten Rationalität" erscheinen dagegen oft willkürlich, da die Kriterien ihrer Anwendbarkeit fehlen. Die Modellierung von Unsicherheit mit Fuzzy-Mengen, die hier in einer maßtheoretischen Interpretation verwendet werden, erlaubt eine Verallgemeinerung der Rationalitätsbedingungen, die viele dieser Ansätze als Spezialfälle enthält. Eine Anwendung bei Social Choice Problemen zeigt das Potential des Ansatzes zur Erklärung und Verbesserung der Verfahren kollektiver Entscheidungen.