Vector Optimization with Infimum and Supremum: Vector Optimization
Autor Andreas Löhneen Limba Engleză Paperback – 15 iul 2013
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 679.05 lei 43-57 zile | |
Springer Berlin, Heidelberg – 15 iul 2013 | 679.05 lei 43-57 zile | |
Hardback (1) | 684.04 lei 43-57 zile | |
Springer Berlin, Heidelberg – 27 mai 2011 | 684.04 lei 43-57 zile |
Preț: 679.05 lei
Preț vechi: 798.88 lei
-15% Nou
Puncte Express: 1019
Preț estimativ în valută:
129.96€ • 134.99$ • 107.95£
129.96€ • 134.99$ • 107.95£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642268410
ISBN-10: 3642268412
Pagini: 216
Ilustrații: X, 206 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.31 kg
Ediția:2011
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Vector Optimization
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642268412
Pagini: 216
Ilustrații: X, 206 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.31 kg
Ediția:2011
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Vector Optimization
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
GraduateTextul de pe ultima copertă
The theory of Vector Optimization is developed by a systematic usage of infimum and supremum. In order to get existence and appropriate properties of the infimum, the image space of the vector optimization problem is embedded into a larger space, which is a subset of the power set, in fact, the space of self-infimal sets. Based on this idea we establish solution concepts, existence and duality results and algorithms for the linear case. The main advantage of this approach is the high degree of analogy to corresponding results of Scalar Optimization. The concepts and results are used to explain and to improve practically relevant algorithms for linear vector optimization problems.
Caracteristici
Presents a completely new approach to Vector Optimization Covers the range from theory to algorithms Includes a self-contained chapter on the linear case Includes supplementary material: sn.pub/extras