Cantitate/Preț
Produs

VLSI for Neural Networks and Artificial Intelligence

Editat de Jose G. Delgado-Frias, W.R. Moore
en Limba Engleză Hardback – 29 sep 1994
Neural network and artificial intelligence algorithrns and computing have increased not only in complexity but also in the number of applications. This in turn has posed a tremendous need for a larger computational power that conventional scalar processors may not be able to deliver efficiently. These processors are oriented towards numeric and data manipulations. Due to the neurocomputing requirements (such as non-programming and learning) and the artificial intelligence requirements (such as symbolic manipulation and knowledge representation) a different set of constraints and demands are imposed on the computer architectures/organizations for these applications. Research and development of new computer architectures and VLSI circuits for neural networks and artificial intelligence have been increased in order to meet the new performance requirements. This book presents novel approaches and trends on VLSI implementations of machines for these applications. Papers have been drawn from a number of research communities; the subjects span analog and digital VLSI design, computer design, computer architectures, neurocomputing and artificial intelligence techniques. This book has been organized into four subject areas that cover the two major categories of this book; the areas are: analog circuits for neural networks, digital implementations of neural networks, neural networks on multiprocessor systems and applications, and VLSI machines for artificial intelligence. The topics that are covered in each area are briefly introduced below.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 95132 lei  6-8 săpt.
  Springer Us – 9 iun 2013 95132 lei  6-8 săpt.
Hardback (1) 95752 lei  6-8 săpt.
  Springer Us – 29 sep 1994 95752 lei  6-8 săpt.

Preț: 95752 lei

Preț vechi: 119690 lei
-20% Nou

Puncte Express: 1436

Preț estimativ în valută:
18326 19333$ 15272£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780306447228
ISBN-10: 0306447223
Pagini: 320
Ilustrații: X, 320 p.
Dimensiuni: 156 x 234 x 19 mm
Greutate: 0.64 kg
Ediția:1994
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States

Public țintă

Research

Descriere

Neural network and artificial intelligence algorithrns and computing have increased not only in complexity but also in the number of applications. This in turn has posed a tremendous need for a larger computational power that conventional scalar processors may not be able to deliver efficiently. These processors are oriented towards numeric and data manipulations. Due to the neurocomputing requirements (such as non-programming and learning) and the artificial intelligence requirements (such as symbolic manipulation and knowledge representation) a different set of constraints and demands are imposed on the computer architectures/organizations for these applications. Research and development of new computer architectures and VLSI circuits for neural networks and artificial intelligence have been increased in order to meet the new performance requirements. This book presents novel approaches and trends on VLSI implementations of machines for these applications. Papers have been drawn from a number of research communities; the subjects span analog and digital VLSI design, computer design, computer architectures, neurocomputing and artificial intelligence techniques. This book has been organized into four subject areas that cover the two major categories of this book; the areas are: analog circuits for neural networks, digital implementations of neural networks, neural networks on multiprocessor systems and applications, and VLSI machines for artificial intelligence. The topics that are covered in each area are briefly introduced below.

Cuprins

Analog Circuits for Neural Networks: Analog VLSI Neural Learning Circuits (H.C. Card). An Analog CMOS Implementation of a Kohonen Network with Learning Capability (O. Landolt). BackPropagation Learning Algorithms for Analog VLSI Implementation (M. Valle et al.). Digital Implementations of Neural Networks: A VLSI Pipelined Neuroemulator (J.G. DelgadoFrias et al.). A Low Latency Digital Neural Network Architecture (W. Fornaciari, F. Salice). The MANTRA Project (M.A. Viredaz et al.). Neural Networks on Multiprocessor Systems and Applications: VLSIImplementation of Associative Memory Systems for Neural Information Processing (A. König, M. Glesner). A Dataflow Approach for Neural Networks (J.G. DelgadoFrias et al.). Knowledge Processing in Neural Architechture (U. Rückert et al.). VLSI Machines for Artificial Intelligence: Hardware Support for Data Parallelism in Production Systems (S.H. Lavington et al.). SPACE (K. Asanovic, D.B. Howe). 19 additional articles. Index.