Cantitate/Preț
Produs

W*-Corresponcences, Finite Directed Graphs and Markov Chains

Autor Victor Vega
en Limba Engleză Paperback – 10 feb 2014
Let A be the W*-algebra, L1(E(0),), where E(0) is a fnite set and is a probability measure with full support. Let P:A->A be a completely positive unital map. In the present context, P is given by a stochastic matrix. We study the properties of P that are refected in the dilation theory developed by Muhly and Solel in Int. J. Math. 13, 2002. Let H be the Hilbert space L2(E(0),) and let pi : A -> B(H) the representation of A given by multiplication. Form the Stinespring space H1. Then X is a W*-correspondence over P is expressed through a completely contractive representation T of X on H. This representation can be dilated to an isometric representation V of X on a Hilbert space that contains H. We show that X is naturally isomorphic to the correspondence associated to the directed graph E whose vertex space is E(0) and whose edge space is the support of the matrix representing P - a subset of E(0)E(0). Further, V is shown to be essentially a Cuntz-Krieger representation of E. We also study the simplicity and the ideal structure of the graph C*-algebra associated to the stochastic matrix P.
Citește tot Restrânge

Preț: 31881 lei

Nou

Puncte Express: 478

Preț estimativ în valută:
6108 6431$ 5042£

Carte tipărită la comandă

Livrare economică 22 ianuarie-05 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783639155242
ISBN-10: 3639155246
Pagini: 120
Dimensiuni: 150 x 220 x 8 mm
Greutate: 0.18 kg
Editura: VDM Verlag Dr. Müller e.K.

Notă biografică

Victor Vega, Ph. D. completed his studies at The University of Iowa. His research interests include Operator Algebras, Operator Theory, Graph Algebras, W*-Correspondences and Markov Chains. He is currently Professor and Chairman of Mathematics at St. Ambrose University in Davenport, Iowa.