Cantitate/Preț
Produs

Web Information Systems Engineering – WISE 2016: 17th International Conference, Shanghai, China, November 8-10, 2016, Proceedings, Part II: Lecture Notes in Computer Science, cartea 10042

Editat de Wojciech Cellary, Mohamed F. Mokbel, Jianmin Wang, Hua Wang, Rui Zhou, Yanchun Zhang
en Limba Engleză Paperback – 2 noi 2016
This two volume set LNCS 10041 and LNCS 10042 constitutes the proceedings of the 17th International Conference on Web Information Systems Engineering, WISE 2016, held in Shanghai, China, in November 2016.
The 39 full papers and 31 short papers presented in these proceedings were carefully reviewed and selected from 233 submissions. The papers cover a wide range of topics such as Social Network Data Analysis; Recommender Systems; Topic Modeling; Data Diversity; Data Similarity; Context-Aware Recommendation; Prediction; Big Data Processing; Cloud Computing; Event Detection; Data Mining; Sentiment Analysis; Ranking in Social Networks; Microblog Data Analysis; Query Processing; Spatial and Temporal Data; Graph Theory; Non-Traditional Environments; and Special Session on Data Quality and Trust in Big Data.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 32338 lei  6-8 săpt.
  Springer International Publishing – 2 noi 2016 32338 lei  6-8 săpt.
  Springer International Publishing – 2 noi 2016 32902 lei  6-8 săpt.

Din seria Lecture Notes in Computer Science

Preț: 32338 lei

Preț vechi: 40422 lei
-20% Nou

Puncte Express: 485

Preț estimativ în valută:
6191 6708$ 5170£

Carte tipărită la comandă

Livrare economică 12-26 decembrie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319487427
ISBN-10: 3319487426
Pagini: 475
Ilustrații: XXIII, 452 p. 142 illus.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.66 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Information Systems and Applications, incl. Internet/Web, and HCI

Locul publicării:Cham, Switzerland

Cuprins

Social Network Data Analysis.- Recommender Systems.- Topic Modeling.- Data Diversity.- Data Similarity.- Context-Aware Recommendation.- Prediction.- Big Data Processing.- Cloud Computing.- Event Detection.- Data Mining.- Sentiment Analysis.- Ranking in Social Networks.- Microblog Data Analysis.- Query Processing.- Spatial and Temporal Data.- Graph Theory.- Non-Traditional Environments.- and Special Session on Data Quality and Trust in Big Data.

Caracteristici

Includes supplementary material: sn.pub/extras