Cantitate/Preț
Produs

Accurate Calibration of Raman Systems: At the Karlsruhe Tritium Neutrino Experiment: Springer Theses

Autor Magnus Schlösser
en Limba Engleză Hardback – 19 mai 2014
Neutrinos can arguably be labeled as the most fascinating elementary particles known as their small but non-zero rest mass points to new mass generating mechanisms beyond the Standard Model, and also assigns primordial neutrinos from the Big Bang a distinct role in shaping the evolution of large-scale structures in the universe. The open question of the absolute neutrino mass scale will be addressed by the Karlsruhe Tritium Neutrino (KATRIN) experiment, currently under construction.
This thesis reports major contributions to developing and implementing new laser-spectroscopic precision tools to continuously monitor the isotope content of the windowless gaseous tritium source of KATRIN. The method of choice, Raman spectroscopy, is ideally suited for in-situ monitoring of all six hydrogen isotopologues. In a series of beautiful experiments the author obtained two independent novel calibration methods, first based on a comparison of experimental Raman depolarization ratios with corresponding quantum-chemical calculations, and second on a gas sampling technique. Both methods yield consistent cross-calibration results and, as well as yielding improvements in precision, will be of major importance in reducing systematic effects in long-term neutrino mass measurements. The methods developed in this thesis also have great potential to further broaden the applications of Raman spectroscopy to study extended sources such as in atmospheric physics.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 61934 lei  43-57 zile
  Springer International Publishing – 3 sep 2016 61934 lei  43-57 zile
Hardback (1) 56420 lei  38-44 zile
  Springer International Publishing – 19 mai 2014 56420 lei  38-44 zile

Din seria Springer Theses

Preț: 56420 lei

Preț vechi: 70524 lei
-20% Nou

Puncte Express: 846

Preț estimativ în valută:
10799 11255$ 8989£

Carte tipărită la comandă

Livrare economică 01-07 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319062204
ISBN-10: 3319062204
Pagini: 240
Ilustrații: XII, 225 p. 77 illus., 18 illus. in color.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.48 kg
Ediția:2014
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses

Locul publicării:Cham, Switzerland

Public țintă

Research

Cuprins

Introduction.- The KATRIN Experiment.- Theory of Quantitative Raman spectroscopy.- Experimental Setup.- Calibration Based on Theoretical Intensities and Spectral Sensitivity.- Calibration Based on Accurate Gas Samples.- Comparison of Calibration Methods.- Summary and Outlook.- Appendix A Statistical Terms.- Appendix B Complete Derivation of Integration Formula for Depolarization Measurements.- Appendix C Jones Calculations for Polarization Aberrations in the Raman Collection System.- Appendix D Measurements of Polarization Aberrations in Raman Cell Windows.- Appendix D Error Estimation in Depolarization Ratio Measurements.- Appendix F Relation Between Experimental Error of Raman Intensities and Depolarization Ratios.- Appendix H Demonstration of Bootstrapping on HYDE Data.- Appendix I Publications.

Notă biografică

Dr. Magnus Schlösser is an experimental physicist with research interests in optical spectroscopy and astroparticle physics. He graduated at the Karlsruhe Institute of Technology in 2009 and was awarded a PhD with distinction in 2013. The PhD project was conducted at the interface of his research interests by developing, characterising and calibrating a Raman system for the accurate measurement of the isotopic purity of the gaseous tritium source at the Karlsruhe Tritium Neutrino Experiment. During the time of the PhD studies he contributed to more than 10 scientific publications and has presented his work at international and national scientific conferences, as well as to the public. Currently, he is investigating further applications of optical spectroscopy for tritium process technology and beyond, with the aim of enhanced sensitivity, high versatility and long-term stability.

Textul de pe ultima copertă

Neutrinos can arguably be labeled as the most fascinating elementary particles known as their small but non-zero rest mass points to new mass generating mechanisms beyond the Standard Model, and also assigns primordial neutrinos from the Big Bang a distinct role in shaping the evolution of large-scale structures in the universe. The open question of the absolute neutrino mass scale will be addressed by the Karlsruhe Tritium Neutrino (KATRIN) experiment, currently under construction.
This thesis reports major contributions to developing and implementing new laser-spectroscopic precision tools to continuously monitor the isotope content of the windowless gaseous tritium source of KATRIN. The method of choice, Raman spectroscopy, is ideally suited for in-situ monitoring of all six hydrogen isotopologues. In a series of beautiful experiments the author obtained two independent novel calibration methods, first based on a comparison of experimental Raman depolarization ratios with corresponding quantum-chemical calculations, and second on a gas sampling technique. Both methods yield consistent cross-calibration results and, as well as yielding improvements in precision, will be of major importance in reducing systematic effects in long-term neutrino mass measurements. The methods developed in this thesis also have great potential to further broaden the applications of Raman spectroscopy to study extended sources such as in atmospheric physics.

Caracteristici

Nominated as an outstanding Ph.D. thesis by Karlsruhe Institute of Technology, Germany Demonstrates how the tritium source composition of a neutrino mass experiment can be accurately measured by Raman spectroscopy Explains how Raman systems can be calibrated accurately for all six hydrogen without the use of a sample-based method Contains Raman depolarization measurement of all six hydrogen isotopologues which agree within the experimental uncertainty with the theoretical predictions Includes supplementary material: sn.pub/extras