Advanced Fuzzy Systems Design and Applications: Studies in Fuzziness and Soft Computing, cartea 112
Autor Yaochu Jinen Limba Engleză Paperback – 12 dec 2011
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 626.33 lei 6-8 săpt. | |
Physica-Verlag HD – 12 dec 2011 | 626.33 lei 6-8 săpt. | |
Hardback (1) | 627.93 lei 6-8 săpt. | |
Physica-Verlag HD – 18 noi 2002 | 627.93 lei 6-8 săpt. |
Din seria Studies in Fuzziness and Soft Computing
- 20% Preț: 971.15 lei
- 20% Preț: 634.35 lei
- 20% Preț: 284.42 lei
- 20% Preț: 872.95 lei
- 20% Preț: 903.86 lei
- 20% Preț: 1020.82 lei
- 20% Preț: 963.94 lei
- 20% Preț: 973.09 lei
- 18% Preț: 926.75 lei
- 20% Preț: 320.69 lei
- 20% Preț: 323.55 lei
- 20% Preț: 968.93 lei
- Preț: 380.47 lei
- 20% Preț: 629.22 lei
- 20% Preț: 957.69 lei
- 18% Preț: 931.05 lei
- 20% Preț: 967.80 lei
- 20% Preț: 970.66 lei
- 15% Preț: 627.93 lei
- 20% Preț: 632.91 lei
- 20% Preț: 969.26 lei
- 15% Preț: 622.67 lei
- 20% Preț: 980.76 lei
- 20% Preț: 964.12 lei
- Preț: 377.66 lei
- 18% Preț: 1188.29 lei
- 20% Preț: 632.76 lei
- 18% Preț: 924.29 lei
- 18% Preț: 921.39 lei
Preț: 626.33 lei
Preț vechi: 782.91 lei
-20% Nou
Puncte Express: 939
Preț estimativ în valută:
119.88€ • 124.94$ • 99.79£
119.88€ • 124.94$ • 99.79£
Carte tipărită la comandă
Livrare economică 04-18 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783790825206
ISBN-10: 3790825204
Pagini: 284
Ilustrații: X, 272 p. 228 illus.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 2003
Editura: Physica-Verlag HD
Colecția Physica
Seria Studies in Fuzziness and Soft Computing
Locul publicării:Heidelberg, Germany
ISBN-10: 3790825204
Pagini: 284
Ilustrații: X, 272 p. 228 illus.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 2003
Editura: Physica-Verlag HD
Colecția Physica
Seria Studies in Fuzziness and Soft Computing
Locul publicării:Heidelberg, Germany
Public țintă
ResearchCuprins
1. Fuzzy Sets and Fuzzy Systems.- 1.1 Basics of Fuzzy Sets.- 1.2 Fuzzy Rule Systems.- 1.3 Interpretability of Fuzzy Rule System.- 1.4 Knowledge Processing with Fuzzy Logic.- 2. Evolutionary Algorithms.- 2.1 Introduction.- 2.2 Generic Evolutionary Algorithms.- 2.3 Adaptation and Self-Adaptation in Evolutionary Algorithms.- 2.4 Constraints Handling.- 2.5 Multi-objective Evolution.- 2.6 Evolution with Uncertain Fitness Functions.- 2.7 Parallel Implementations.- 2.8 Summary.- 3. Artificial Neural Networks.- 3.1 Introduction.- 3.2 Feedforward Neural Network Models.- 3.3 Learning Algorithms.- 3.4 Improvement of Generalization.- 3.5 Rule Extraction from Neural Networks.- 3.6 Interaction between Evolution and Learning.- 3.7 Summary.- 4. Conventional Data-driven Fuzzy Systems Design.- 4.1 Introduction.- 4.2 Fuzzy Inference Based Method.- 4.3 Wang-Mendel’s Method.- 4.4 A Direct Method.- 4.5 An Adaptive Fuzzy Optimal Controller.- 4.6 Summary.- 5.Neural Network Based Fuzzy Systems Design.- 5.1 Neurofuzzy Systems.- 5.2 The Pi-sigma Neurofuzzy Model.- 5.3 Modeling and Control Using the Neurofuzzy System.- 5.4 Neurofuzzy Control of Nonlinear Systems.- 5.5 Summary.- 6. Evolutionary Design of Fuzzy Systems.- 6.1 Introduction.- 6.2 Evolutionary Design of Flexible Structured Fuzzy Controller..- 6.3 Evolutionary Optimization of Fuzzy Rules.- 6.4 Fuzzy Systems Design for High-Dimensional Systems.- 6.5 Summary.- 7. Knowledge Discovery by Extracting Interpretable Fuzzy Rules.- 7.1 Introduction.- 7.2 Evolutionary Interpretable Fuzzy Rule Generation.- 7.3 Interactive Co-evolution for Fuzzy Rule Extraction.- 7.4 Fuzzy Rule Extraction from RBF Networks.- 7.5 Summary.- 8. Fuzzy Knowledge Incorporation into Neural Networks.- 8.1 Data and A Priori Knowledge.- 8.2 Knowledge Incorporation in NeuralNetworks for Control.- 8.3 Fuzzy Knowledge Incorporation By Regularization.- 8.4 Fuzzy Knowledge as A Related Task in Learning.- 8.5 Simulation Studies.- 8.6 Summary.- 9. Fuzzy Preferences Incorporation into Multi-objective Optimization.- 9.1 Multi-objective Optimization and Preferences Handling.- 9.2 Evolutionary Dynamic Weighted Aggregation.- 9.3 Fuzzy Preferences Incorporation in MOO.- 9.4 Summary.- References.
Caracteristici
Includes supplementary material: sn.pub/extras