Cantitate/Preț
Produs

Advances in Knowledge Discovery and Data Mining: 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings, Part II: Lecture Notes in Computer Science, cartea 10235

Editat de Jinho Kim, Kyuseok Shim, Longbing Cao, Jae-Gil Lee, Xuemin Lin, Yang-Sae Moon
en Limba Engleză Paperback – 23 apr 2017
This two-volume set, LNAI 10234 and 10235, constitutes the thoroughly refereed proceedings of the 21st Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2017, held in Jeju, South Korea, in May 2017. The 129 full papers were carefully reviewed and selected from 458 submissions. They are organized in topical sections named: classification and deep learning; social network and graph mining; privacy-preserving mining and security/risk applications; spatio-temporal and sequential data mining; clustering and anomaly detection; recommender system; feature selection; text and opinion mining; clustering and matrix factorization; dynamic, stream data mining; novel models and algorithms; behavioral data mining; graph clustering and community detection; dimensionality reduction.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 67400 lei  6-8 săpt.
  Springer International Publishing – 23 apr 2017 67400 lei  6-8 săpt.
  Springer International Publishing – 23 apr 2017 67485 lei  6-8 săpt.

Din seria Lecture Notes in Computer Science

Preț: 67485 lei

Preț vechi: 84356 lei
-20% Nou

Puncte Express: 1012

Preț estimativ în valută:
12917 13311$ 10905£

Carte tipărită la comandă

Livrare economică 04-18 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319575285
ISBN-10: 3319575287
Pagini: 857
Ilustrații: XXXII, 857 p. 252 illus.
Dimensiuni: 155 x 235 x 45 mm
Greutate: 1.23 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence

Locul publicării:Cham, Switzerland

Cuprins

Classification and deep learning.- Social network and graph mining.- Privacy-preserving mining and security/risk applications.- Spatio-temporal and sequential data mining.- Clustering and anomaly detection.- Recommender system.- Feature selection.- Text and opinion mining.- Clustering and matrix factorization.- Dynamic, stream data mining.- Novel models and algorithms.- Behavioral data mining.- Graph clustering and community detection.- Dimensionality reduction.

Caracteristici

Includes supplementary material: sn.pub/extras Includes supplementary material: sn.pub/extras