Cantitate/Preț
Produs

Algebraic Cobordism: Springer Monographs in Mathematics

Autor Marc Levine, Fabien Morel
en Limba Engleză Paperback – 30 noi 2010
Following Quillen's approach to complex cobordism, the authors introduce the notion of oriented cohomology theory on the category of smooth varieties over a fixed field. They prove the existence of a universal such theory (in characteristic 0) called Algebraic Cobordism. Surprisingly, this theory satisfies the analogues of Quillen's theorems: the cobordism of the base field is the Lazard ring and the cobordism of a smooth variety is generated over the Lazard ring by the elements of positive degrees. This implies in particular the generalized degree formula conjectured by Rost. The book also contains some examples of computations and applications.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 63387 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 30 noi 2010 63387 lei  6-8 săpt.
Hardback (1) 63264 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 9 ian 2007 63264 lei  6-8 săpt.

Din seria Springer Monographs in Mathematics

Preț: 63387 lei

Preț vechi: 74573 lei
-15% Nou

Puncte Express: 951

Preț estimativ în valută:
12135 12480$ 10067£

Carte tipărită la comandă

Livrare economică 19 februarie-05 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642071911
ISBN-10: 3642071910
Pagini: 260
Ilustrații: XII, 246 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.37 kg
Ediția:2007
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Monographs in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Introduction.- I. Cobordism and oriented cohomology.- 1.1. Oriented cohomology theories. 1.2. Algebraic cobordism. 1.3. Relations with complex cobordism. - II. The definition of algebraic cobordism. 2.1. Oriented Borel-Moore functions. 2.2. Oriented functors of geometric type. 2.3. Some elementary properties. 2.4. The construction of algebraic cobordism. 2.5. Some computations in algebraic cobordism.- III. Fundamental properties of algebraic cobordism. 3.1. Divisor classes. 3.2. Localization. 3.3. Transversality. 3.4. Homotopy invariance. 3.5. The projective bundle formula. 3.6. The extended homotopy property. IV. Algebraic cobordism and the Lazard ring. 4.1. Weak homology and Chern classes. 4.2. Algebraic cobordism and K-theory. 4.3. The cobordism ring of a point. 4.4. Degree formulas. 4.5. Comparison with the Chow groups. V. Oriented Borel-Moore homology. 5.1. Oriented Borel-Moore homology theories. 5.2. Other oriented theories.- VI. Functoriality. 6.1. Refined cobordism. 6.2. Intersection with a pseudo-divisor. 6.3. Intersection with a pseudo-divisor II. 6.4. A moving lemma. 6.5. Pull-back for l.c.i. morphisms. 6.6. Refined pull-back and refined intersections. VII. The universality of algebraic cobordism. 7.1. Statement of results. 7.2. Pull-back in Borel-Moore homology theories. 7.3. Universality 7.4. Some applications.- Appendix A: Resolution of singularities.- References.- Index.- Glossary of Notation.

Textul de pe ultima copertă

Following Quillen's approach to complex cobordism, the authors introduce the notion of oriented cohomology theory on the category of smooth varieties over a fixed field. They prove the existence of a universal such theory (in characteristic 0) called Algebraic Cobordism. Surprisingly, this theory satisfies the analogues of Quillen's theorems: the cobordism of the base field is the Lazard ring and the cobordism of a smooth variety is generated over the Lazard ring by the elements of positive degrees. This implies in particular the generalized degree formula conjectured by Rost. The book also contains some examples of computations and applications.

Caracteristici

Includes supplementary material: sn.pub/extras