Algebraic Systems of Equations and Computational Complexity Theory: Mathematics and Its Applications, cartea 269
Autor Z. Wang, S. Xu, T. Gaoen Limba Engleză Paperback – 14 oct 2012
Din seria Mathematics and Its Applications
- 18% Preț: 945.62 lei
- 15% Preț: 648.42 lei
- 15% Preț: 651.99 lei
- 15% Preț: 591.61 lei
- Preț: 394.29 lei
- 18% Preț: 955.56 lei
- 15% Preț: 586.85 lei
- 5% Preț: 655.17 lei
- 15% Preț: 658.70 lei
- 15% Preț: 648.56 lei
- 15% Preț: 604.84 lei
- Preț: 394.87 lei
- 15% Preț: 651.84 lei
- Preț: 374.76 lei
- Preț: 394.51 lei
- 15% Preț: 706.30 lei
- Preț: 391.02 lei
- Preț: 389.70 lei
- 15% Preț: 585.04 lei
- 15% Preț: 653.98 lei
- 15% Preț: 587.02 lei
- 20% Preț: 577.42 lei
- Preț: 395.47 lei
- 15% Preț: 601.88 lei
- 15% Preț: 594.53 lei
- 15% Preț: 651.84 lei
- 15% Preț: 649.06 lei
- Preț: 392.21 lei
- 15% Preț: 649.06 lei
- 15% Preț: 643.48 lei
- Preț: 398.15 lei
Preț: 386.00 lei
Nou
Puncte Express: 579
Preț estimativ în valută:
73.87€ • 76.68$ • 61.60£
73.87€ • 76.68$ • 61.60£
Carte tipărită la comandă
Livrare economică 22 martie-05 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401043427
ISBN-10: 9401043426
Pagini: 260
Ilustrații: VI, 244 p.
Dimensiuni: 160 x 240 x 14 mm
Greutate: 0.37 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9401043426
Pagini: 260
Ilustrații: VI, 244 p.
Dimensiuni: 160 x 240 x 14 mm
Greutate: 0.37 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
Chpater 1 Kuhn’s algorithm for algebraic equations.- §1. Triangulation and labelling.- §2. Complementary pivoting algorithm.- §3. Convergence, I.- §4. Convergence, II.- 2 Efficiency of Kuhn’s algorithm.- §1. Error estimate.- §2. Cost estimate.- §3. Monotonicity problem.- §4. Results on monotonicity.- 3 Newton method and approximate zeros.- §1. Approximate zeros.- §2. Coefficients of polynomials.- §3. One step of Newton iteration.- §4. Conditions for approximate zeros.- 4 A complexity comparison of Kuhn’s algorithm and Newton method.- §1. Smale’s work on the complexity of Newton method.- §2. Set of bad polynomials and its volume estimate.- §3. Locate approximate zeros by Kuhn’s algorithm.- §4. Some remarks.- 5 Incremental algorithms and cost theory.- §1. Incremental algorithms Ih,f.- §2. Euler’s algorithm is of efficiency k.- §3. Generalized approximate zeros.- §4. Ek iteration.- §5. Cost theory of Ek as an Euler’s algorithm.- §6. Incremental algorithms of efficiency k.- 6 Homotopy algorithms.- §1. Homotopies and Index Theorem.- §2. Degree and its invariance.- §3. Jacobian of polynomial mappings.- §4. Conditions for boundedness of solutions.- 7 Probabilistic discussion on zeros of polynomial mappings.- §1. Number of zeros of polynomial mappings.- §2. Isolated zeros.- §3. Locating zeros of analytic functions in bounded regions.- 8 Piecewise linear algorithms.- §1. Zeros of PL mapping and their indexes.- §2. PL approximations.- §3. PL homotopy algorithms work with probability one.- References.- Acknowledgments.