Cantitate/Preț
Produs

Algorithmic Learning Theory: 17th International Conference, ALT 2006, Barcelona, Spain, October 7-10, 2006, Proceedings: Lecture Notes in Computer Science, cartea 4264

Editat de José L. Balcázar, Philip M. Long, Frank Stephan
en Limba Engleză Paperback – 27 sep 2006

Din seria Lecture Notes in Computer Science

Preț: 33934 lei

Preț vechi: 42417 lei
-20% Nou

Puncte Express: 509

Preț estimativ în valută:
6494 6739$ 5428£

Carte tipărită la comandă

Livrare economică 15-29 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540466499
ISBN-10: 3540466495
Pagini: 412
Ilustrații: XIII, 393 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.61 kg
Ediția:2006
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Editors’ Introduction.- Editors’ Introduction.- Invited Contributions.- Solving Semi-infinite Linear Programs Using Boosting-Like Methods.- e-Science and the Semantic Web: A Symbiotic Relationship.- Spectral Norm in Learning Theory: Some Selected Topics.- Data-Driven Discovery Using Probabilistic Hidden Variable Models.- Reinforcement Learning and Apprenticeship Learning for Robotic Control.- Regular Contributions.- Learning Unions of ?(1)-Dimensional Rectangles.- On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle.- Active Learning in the Non-realizable Case.- How Many Query Superpositions Are Needed to Learn?.- Teaching Memoryless Randomized Learners Without Feedback.- The Complexity of Learning SUBSEQ (A).- Mind Change Complexity of Inferring Unbounded Unions of Pattern Languages from Positive Data.- Learning and Extending Sublanguages.- Iterative Learning from Positive Data and Negative Counterexamples.- Towards a Better Understanding of Incremental Learning.- On Exact Learning from Random Walk.- Risk-Sensitive Online Learning.- Leading Strategies in Competitive On-Line Prediction.- Hannan Consistency in On-Line Learning in Case of Unbounded Losses Under Partial Monitoring.- General Discounting Versus Average Reward.- The Missing Consistency Theorem for Bayesian Learning: Stochastic Model Selection.- Is There an Elegant Universal Theory of Prediction?.- Learning Linearly Separable Languages.- Smooth Boosting Using an Information-Based Criterion.- Large-Margin Thresholded Ensembles for Ordinal Regression: Theory and Practice.- Asymptotic Learnability of Reinforcement Problems with Arbitrary Dependence.- Probabilistic Generalization of Simple Grammars and Its Application to Reinforcement Learning.- Unsupervised Slow Subspace-Learning fromStationary Processes.- Learning-Related Complexity of Linear Ranking Functions.