Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010. Proceedings, Part II: Lecture Notes in Computer Science, cartea 6322
Editat de José L. Balcázar, Francesco Bonchi, Aristides Gionis, Michèle Sebagen Limba Engleză Paperback – 13 sep 2010
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (3) | 327.13 lei 3-5 săpt. | |
Springer Berlin, Heidelberg – 13 sep 2010 | 327.13 lei 3-5 săpt. | |
Springer Berlin, Heidelberg – 13 sep 2010 | 628.27 lei 3-5 săpt. | |
Springer Berlin, Heidelberg – 13 sep 2010 | 629.06 lei 3-5 săpt. |
Din seria Lecture Notes in Computer Science
- 15% Preț: 549.48 lei
- 20% Preț: 322.44 lei
- 20% Preț: 324.00 lei
- 20% Preț: 315.78 lei
- 20% Preț: 238.01 lei
- 20% Preț: 1017.66 lei
- 20% Preț: 322.44 lei
- 20% Preț: 438.69 lei
- 20% Preț: 256.27 lei
- 20% Preț: 325.58 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 315.19 lei
- 20% Preț: 1005.39 lei
- 20% Preț: 554.59 lei
- 17% Preț: 360.19 lei
- 20% Preț: 620.45 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1120.51 lei
- 20% Preț: 560.32 lei
- 20% Preț: 548.35 lei
- 20% Preț: 319.10 lei
- 20% Preț: 611.22 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- 20% Preț: 315.78 lei
- 20% Preț: 172.69 lei
- 20% Preț: 1339.86 lei
- Preț: 361.23 lei
- 20% Preț: 969.58 lei
- 20% Preț: 722.40 lei
- 20% Preț: 782.28 lei
- 20% Preț: 301.95 lei
- 20% Preț: 504.57 lei
- 20% Preț: 722.90 lei
- 20% Preț: 369.12 lei
- 20% Preț: 334.72 lei
- 20% Preț: 550.29 lei
- Preț: 389.06 lei
- 20% Preț: 564.99 lei
- 20% Preț: 552.25 lei
- 20% Preț: 552.25 lei
- 20% Preț: 552.64 lei
- 20% Preț: 331.59 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 327.13 lei
Preț vechi: 408.91 lei
-20% Nou
Puncte Express: 491
Preț estimativ în valută:
62.62€ • 67.33$ • 52.20£
62.62€ • 67.33$ • 52.20£
Carte disponibilă
Livrare economică 28 noiembrie-12 decembrie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642158827
ISBN-10: 364215882X
Pagini: 518
Ilustrații: XXI, 518 p. 145 illus.
Greutate: 0.77 kg
Ediția:2010
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 364215882X
Pagini: 518
Ilustrații: XXI, 518 p. 145 illus.
Greutate: 0.77 kg
Ediția:2010
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Regular Papers.- Bayesian Knowledge Corroboration with Logical Rules and User Feedback.- Learning an Affine Transformation for Non-linear Dimensionality Reduction.- NDPMine: Efficiently Mining Discriminative Numerical Features for Pattern-Based Classification.- Hidden Conditional Ordinal Random Fields for Sequence Classification.- A Unifying View of Multiple Kernel Learning.- Evolutionary Dynamics of Regret Minimization.- Recognition of Instrument Timbres in Real Polytimbral Audio Recordings.- Finding Critical Nodes for Inhibiting Diffusion of Complex Contagions in Social Networks.- Semi-supervised Abstraction-Augmented String Kernel for Multi-level Bio-Relation Extraction.- Online Knowledge-Based Support Vector Machines.- Learning with Randomized Majority Votes.- Exploration in Relational Worlds.- Efficient Confident Search in Large Review Corpora.- Learning to Tag from Open Vocabulary Labels.- A Robustness Measure of Association Rules.- Automatic Model Adaptation for Complex Structured Domains.- Collective Traffic Forecasting.- On Detecting Clustered Anomalies Using SCiForest.- Constrained Parameter Estimation for Semi-supervised Learning: The Case of the Nearest Mean Classifier.- Online Learning in Adversarial Lipschitz Environments.- Summarising Data by Clustering Items.- Classification and Novel Class Detection of Data Streams in a Dynamic Feature Space.- Latent Structure Pattern Mining.- First-Order Bayes-Ball.- Learning from Demonstration Using MDP Induced Metrics.- Demand-Driven Tag Recommendation.- Solving Structured Sparsity Regularization with Proximal Methods.- Exploiting Causal Independence in Markov Logic Networks: Combining Undirected and Directed Models.- Improved MinMax Cut Graph Clustering with Nonnegative Relaxation.- Integrating Constraint Programming and Itemset Mining.- Topic Modeling for Personalized Recommendation of Volatile Items.- Conditional Ranking on Relational Data.
Caracteristici
Unique visibility State-of-the-art survey Fast-track conference proceedings