Cantitate/Preț
Produs

Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups: Mathematical Modelling: Theory and Applications, cartea 17

Autor J.L. Bueso, José Gómez-Torrecillas, A. Verschoren
en Limba Engleză Hardback – 31 iul 2003
The already broad range of applications of ring theory has been enhanced in the eighties by the increasing interest in algebraic structures of considerable complexity, the so-called class of quantum groups. One of the fundamental properties of quantum groups is that they are modelled by associative coordinate rings possessing a canonical basis, which allows for the use of algorithmic structures based on Groebner bases to study them. This book develops these methods in a self-contained way, concentrating on an in-depth study of the notion of a vast class of non-commutative rings (encompassing most quantum groups), the so-called Poincaré-Birkhoff-Witt rings. We include algorithms which treat essential aspects like ideals and (bi)modules, the calculation of homological dimension and of the Gelfand-Kirillov dimension, the Hilbert-Samuel polynomial, primality tests for prime ideals, etc.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 38931 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 8 dec 2010 38931 lei  6-8 săpt.
Hardback (1) 39640 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 31 iul 2003 39640 lei  6-8 săpt.

Din seria Mathematical Modelling: Theory and Applications

Preț: 39640 lei

Nou

Puncte Express: 595

Preț estimativ în valută:
7586 7826$ 6420£

Carte tipărită la comandă

Livrare economică 05-19 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781402014024
ISBN-10: 1402014023
Pagini: 300
Ilustrații: XI, 300 p.
Dimensiuni: 156 x 234 x 20 mm
Greutate: 0.61 kg
Ediția:2003
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematical Modelling: Theory and Applications

Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

1. Generalities on rings.- 2. Gröbner basis computation algorithms.- 3. Poincaré-Birkhoff-Witt Algebras.- 4. First applications.- 5. Gröbner bases for modules.- 6. Syzygies and applications.- 7. The Gelfand-Kirillov dimension and the Hilbert polynomial.- 8. Primality.- References.