Cantitate/Preț
Produs

Cellular Neural Networks: Dynamics and Modelling: Mathematical Modelling: Theory and Applications, cartea 16

Autor A. Slavova
en Limba Engleză Hardback – 31 mar 2003
Conventional digital computation methods have run into a se­ rious speed bottleneck due to their serial nature. To overcome this problem, a new computation model, called Neural Networks, has been proposed, which is based on some aspects of neurobiology and adapted to integrated circuits. The increased availability of com­ puting power has not only made many new applications possible but has also created the desire to perform cognitive tasks which are easily carried out by the human brain. It become obvious that new types of algorithms and/or circuits were necessary to cope with such tasks. Inspiration has been sought from the functioning of the hu­ man brain, which led to the artificial neural network approach. One way of looking at neural networks is to consider them to be arrays of nonlinear dynamical systems that interact with each other. This book deals with one class of locally coupled neural net­ works, called Cellular Neural Networks (CNNs). CNNs were intro­ duced in 1988 by L. O. Chua and L. Yang [27,28] as a novel class of information processing systems, which posseses some of the key fea­ tures of neural networks (NNs) and which has important potential applications in such areas as image processing and pattern reco­ gnition. Unfortunately, the highly interdisciplinary nature of the research in CNNs makes it very difficult for a newcomer to enter this important and fasciriating area of modern science.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 55745 lei  38-45 zile
  SPRINGER NETHERLANDS – 30 dec 2010 55745 lei  38-45 zile
Hardback (1) 64334 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 31 mar 2003 64334 lei  6-8 săpt.

Din seria Mathematical Modelling: Theory and Applications

Preț: 64334 lei

Preț vechi: 75686 lei
-15% Nou

Puncte Express: 965

Preț estimativ în valută:
12313 12807$ 10319£

Carte tipărită la comandă

Livrare economică 14-28 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781402011924
ISBN-10: 140201192X
Pagini: 220
Ilustrații: X, 220 p. 1 illus.
Dimensiuni: 160 x 240 x 18 mm
Greutate: 0.5 kg
Ediția:2003
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematical Modelling: Theory and Applications

Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

Preface.- 1: Basic theory about CNNs.- 1.1. Introduction to the CNN paradigm.- 1.2. Main types of CNN equations.- 1.3. Theorems and results on CNN stability.- 1.4. Examples.- 2: Dynamics of nonlinear and delay CNNs.- 2.1. Nonlinear CNNs.- 2.2. CNN with delay.- 2.3. Examples. 3: Hysteresis and chaos in CNNs.- 3.1. CNNs with hystersis in the feedback system.- 3.2. Nonlinear CNNs with hysteresis in the output dynamics.- 3.3. Feedback and hysteresis.- 3.4. Control of chaotic CNNs.- 4: CNN modelling in biology, physics and ecology.- 4.1. Modelling PDEs via CNNs.- 4.2. CNN model of Sine-Gordon equation.- 4.3. CNN model of FitzHugh-Nagumo equation.- 4.4. CNN model of Fisher's equation.- 4.5. CNN model of Brusselator equation.- 4.6. CNN model of Toda Lattice equation.- 4.7. Lotka-Volterra equation and its CNN model.- 5: Appendix A: Topological degree method.- 6: Appendix B: Hysteresis and its models.- 7: Appendix C: Describing function method and its application for analysis of Cellular Neural Networks.- References.- Index.

Recenzii

From the reviews:
"In 1988, Chua and Yang introduced a novel class of information processing systems, termed cellular neural networks (CNNs) … . The book under review is concerned with mathematical modeling and analysis of this useful class of neural networks … . the book contains many interesting theoretical results on dynamics of CNNs along with examples illustrating the usefulness of CNNs for mathematical modeling in natural sciences and may be of interest for researchers and graduate students in applied mathematics." (Yuri V. Rogovchenko, Zentralblatt MATH, Vol. 1049 (24), 2004)