An Introduction to Bayesian Inference, Methods and Computation
Autor Nick Hearden Limba Engleză Paperback – 19 oct 2022
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 360.83 lei 3-5 săpt. | +14.14 lei 7-11 zile |
Springer International Publishing – 19 oct 2022 | 360.83 lei 3-5 săpt. | +14.14 lei 7-11 zile |
Hardback (1) | 584.58 lei 6-8 săpt. | |
Springer International Publishing – 18 oct 2021 | 584.58 lei 6-8 săpt. |
Preț: 360.83 lei
Preț vechi: 434.74 lei
-17% Nou
Puncte Express: 541
Preț estimativ în valută:
69.07€ • 72.56$ • 58.04£
69.07€ • 72.56$ • 58.04£
Carte disponibilă
Livrare economică 18 februarie-04 martie
Livrare express 04-08 februarie pentru 24.13 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030828103
ISBN-10: 3030828107
Pagini: 169
Ilustrații: XII, 169 p. 82 illus., 70 illus. in color.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.27 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland
ISBN-10: 3030828107
Pagini: 169
Ilustrații: XII, 169 p. 82 illus., 70 illus. in color.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.27 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland
Cuprins
Uncertainty and Decisions.- Prior and Likelihood Representation.- Graphical Modeling.- Parametric Models.- Computational Inference.- Bayesian Software Packages.- Model choice.- Linear Models.- Nonparametric Models.- Nonparametric Regression.- Clustering and Latent Factor Models.- Conjugate Parametric Models.
Notă biografică
Professor Nick Heard received his PhD degree from the Department of Mathematics at Imperial College London in 2001 and currently holds the position of Chair in Statistics at Imperial. His research interests include developing statistical models for cyber-security applications, finding community structure in large dynamic networks, clustering and changepoint analysis, in each case using computational Bayesian methods.
Textul de pe ultima copertă
These lecture notes provide a rapid, accessible introduction to Bayesian statistical methods. The course covers the fundamental philosophy and principles of Bayesian inference, including the reasoning behind the prior/likelihood model construction synonymous with Bayesian methods, through to advanced topics such as nonparametrics, Gaussian processes and latent factor models. These advanced modelling techniques can easily be applied using computer code samples written in Python and Stan which are integrated into the main text. Importantly, the reader will learn methods for assessing model fit, and to choose between rival modelling approaches.
Caracteristici
Quickly progresses from fundamental concepts to advanced modelling techniques Provides Stan and Python codes for illustrating concepts Presents exercises with solutions integrated into each chapter