An Introduction to Ergodic Theory: Graduate Texts in Mathematics, cartea 79
Autor Peter Waltersen Limba Engleză Paperback – 6 oct 2000
Din seria Graduate Texts in Mathematics
- Preț: 337.45 lei
- 17% Preț: 528.66 lei
- Preț: 383.85 lei
- Preț: 402.87 lei
- 17% Preț: 398.97 lei
- Preț: 355.82 lei
- Preț: 411.83 lei
- Preț: 404.47 lei
- Preț: 289.88 lei
- 17% Preț: 365.79 lei
- 17% Preț: 359.45 lei
- Preț: 450.64 lei
- 15% Preț: 488.70 lei
- 17% Preț: 430.49 lei
- 13% Preț: 357.75 lei
- Preț: 407.88 lei
- 13% Preț: 352.49 lei
- 13% Preț: 358.86 lei
- 13% Preț: 393.48 lei
- 11% Preț: 351.00 lei
- 17% Preț: 359.58 lei
- Preț: 350.45 lei
- Preț: 399.74 lei
- Preț: 498.91 lei
- 20% Preț: 571.26 lei
- 15% Preț: 546.59 lei
- Preț: 498.69 lei
- 15% Preț: 354.39 lei
- Preț: 313.10 lei
- 13% Preț: 427.39 lei
- 17% Preț: 363.59 lei
- Preț: 340.18 lei
- 17% Preț: 364.47 lei
- 17% Preț: 366.47 lei
- 17% Preț: 366.06 lei
- Preț: 247.59 lei
- 17% Preț: 367.70 lei
- 13% Preț: 356.79 lei
- 17% Preț: 398.78 lei
- 17% Preț: 398.51 lei
- 17% Preț: 496.63 lei
- 15% Preț: 482.97 lei
- Preț: 401.99 lei
- 17% Preț: 366.56 lei
- 20% Preț: 449.73 lei
- Preț: 380.34 lei
- Preț: 364.79 lei
- 17% Preț: 427.27 lei
- Preț: 358.07 lei
Preț: 405.00 lei
Nou
Puncte Express: 608
Preț estimativ în valută:
77.51€ • 80.61$ • 64.86£
77.51€ • 80.61$ • 64.86£
Carte disponibilă
Livrare economică 22 februarie-08 martie
Livrare express 08-14 februarie pentru 31.58 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387951522
ISBN-10: 0387951520
Pagini: 250
Ilustrații: IX, 250 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.37 kg
Ediția:Softcover reprint of the original 1st ed. 1982
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 0387951520
Pagini: 250
Ilustrații: IX, 250 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.37 kg
Ediția:Softcover reprint of the original 1st ed. 1982
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
0 Preliminaries.- §0.1 Introduction.- §0.2 Measure Spaces.- §0.3 Integration.- §0.4 Absolutely Continuous Measures and Conditional Expectations.- §0.5 Function Spaces.- §0.6 Haar Measure.- §0.7 Character Theory.- §0.8 Endomorphisms of Tori.- §0.9 Perron—Frobenius Theory.- §0.10 Topology.- 1 Measure-Preserving Transformations.- §1.1 Definition and Examples.- §1.2 Problems in Ergodic Theory.- §1.3 Associated Isometries.- §1.4 Recurrence.- §1.5 Ergodicity.- §1.6 The Ergodic Theorem.- §1.7 Mixing.- 2 Isomorphism, Conjugacy, and Spectral Isomorphism.- §2.1 Point Maps and Set Maps.- §2.2 Isomorphism of Measure-Preserving Transformations.- §2.3 Conjugacy of Measure-Preserving Transformations.- §2.4 The Isomorphism Problem.- §2.5 Spectral Isomorphism.- §2.6 Spectral Invariants.- 3 Measure-Preserving Transformations with Discrete Spectrum.- §3.1 Eigenvalues and Eigenfunctions.- §3.2 Discrete Spectrum.- §3.3 Group Rotations.- 4 Entropy.- §4.1 Partitions and Subalgebras.- §4.2 Entropy of a Partition.- §4.3 Conditional Entropy.- §4.4 Entropy of a Measure-Preserving Transformation.- §4.5 Properties of h (T, A) and h (T).- §4.6 Some Methods for Calculating h (T).- §4.7 Examples.- §4.8 How Good an Invariant is Entropy?.- §4.9 Bernoulli Automorphisms and Kolmogorov Automorphisms.- §4.10 The Pinsker ?-Algebra of a Measure-Preserving Transformation.- §4.11 Sequence Entropy.- §4.12 Non-invertible Transformations.- §4.13 Comments.- 5 Topological Dynamics.- §5.1 Examples.- §5.2 Minimality.- §5.3 The Non-wandering Set.- §5.4 Topological Transitivity.- §5.5 Topological Conjugacy and Discrete Spectrum.- §5.6 Expansive Homeomorphisms.- 6 Invariant Measures for Continuous Transformations.- §6.1 Measures on Metric Spaces.- §6.2 Invariant Measures for Continuous Transformations.- §6.3 Interpretation of Ergodicity and Mixing.- §6.4 Relation of Invariant Measures to Non-wandering Sets, Periodic Points and Topological Transitivity.- §6.5 Unique Ergodicity.- §6.6 Examples.- 7 Topological Entropy.-§7.1 Definition Using Open Covers.- §7.2 Bowen’s Definition.- §7.3 Calculation of Topological Entropy.- 8 Relationship Between Topological Entropy and Measure-Theoretic Entropy.- §8.1 The Entropy Map.- §8.2 The Variational Principle.- §8.3 Measures with Maximal Entropy.- §8.4 Entropy of Affine Transformations.- §8.5 The Distribution of Periodic Points.- §8.6 Definition of Measure-Theoretic Entropy Using the Metrics dn.- 9 Topological Pressure and Its Relationship with Invariant Measures.- §9.1 Topological Pressure.- §9.2 Properties of Pressure.- §9.3 The Variational Principle.- §9.4 Pressure Determines M(X, T).- §9.5 Equilibrium States.- 10 Applications and Other Topics.- §10.1 The Qualitative Behaviour of Diffeomorphisms.- §10.2 The Subadditive Ergodic Theorem and the Multiplicative Ergodic Theorem.- §10.3 Quasi-invariant Measures.- §10.4 Other Types of Isomorphism.- §10.5 Transformations of Intervals.- §10.6 Further Reading.- References.